Nothing
##Variational Mode Decomposition Based Random Forest Model
VMDRF=function(data,k,alpha,tau,K,DC,init,tol,m,n){
data_org=as.matrix(data)
xt=as.matrix(data_org)
xt=as.vector(data_org)
#code for display no.of imf and residual
try=VMDecomp::vmd(xt,alpha = alpha,
tau = tau,
K = K,
DC = DC,
init = init,
tol = tol)
imf_extr=try$u
total_IMF=ncol(imf_extr)
no_of_imf=ncol(imf_extr)
len_extr_imf=length(imf_extr[,1])
length_split=len_extr_imf-1
test_data_l=ceiling(k*length_split)
test_data_original=data_org[(test_data_l+2):length(data_org),]
length_test_data=length(test_data_original)
# dataset creation
extr_imf=0
model_svm=0
predicted_out=matrix(nrow =length_test_data,ncol = no_of_imf)
MSE_out=0
RMSE_out=0
MAPE_out=0
MAD_out=0
final_predict_imf=0
for (i in 1:no_of_imf)
{
extr_imf=imf_extr[,i]
yt=extr_imf[1:(len_extr_imf-1)]
xt=extr_imf[2:len_extr_imf]
data=data.frame(yt,xt)
len_data=length(data[,1])
split_train=k*len_data
r_train=ceiling(split_train)
traindata=data[1:r_train,]
testdata=data[(r_train+1):len_data,]
model_RF <- randomForest::randomForest(yt ~ ., data=traindata, mtry=m, ntree=n)
print(model_RF)
predicted_out[,i]<- stats::predict(model_RF,testdata)
final_predict_imf=final_predict_imf+predicted_out[,i]
}
final_prediction=final_predict_imf
# summarize accuracy
MSE_out <- mean((test_data_original - final_prediction)^2)
RMSE_out<- sqrt(MSE_out)
#mean absolute deviation (MAD)
MAD_out=mean(abs(test_data_original - final_prediction))
#Mean absolute percent error (MAPE)
MAPE_out=mean(abs((test_data_original-final_prediction)/test_data_original))
#Maximum Error
ME_out=max(abs(test_data_original-final_prediction))
#accuracy
prediction_accuracy=cbind(RMSE_out,MAD_out,MAPE_out,ME_out)
TotalIMF = K
output_f=list(Total_No_IMF=TotalIMF, Prediction_Accuracy_VMDRF =prediction_accuracy, Final_Prediction_VMDRF =final_prediction)
return(output_f)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.