Nothing
#' Applying the multi-level Monte Carlo (MLMC) technique to the pmvt function
#' The function uses \code{NLevel1 = 1} for \code{m = m2} and the same
#' exponential tilting parameter as \code{m = m1} to compute one MC estimate.
#' This MC estimate is used to correct the bias from the Vecchia approximation
#'
#' @importFrom truncnorm etruncnorm
#' @importFrom nleqslv nleqslv
#' @importFrom stats runif
#' @importFrom TruncatedNormal cholperm
#' @importFrom utils getFromNamespace
#'
#' @param lower lower bound vector for TMVT
#' @param upper upper bound vector for TMVT
#' @param delta MVT shifting parameter
#' @param df degrees of freedom
#' @param locs location (feature) matrix n X d
#' @param covName covariance function name from the `GpGp` package
#' @param covParms parameters for `covName`
#' @param m1 the smaller Vecchia conditioning set size for Level 1 MC
#' @param m2 the bigger Vecchia conditioning set size for Level 2 MC
#' @param sigma dense covariance matrix, not needed when `locs` is not null
#' @param reorder whether to reorder integration variables. `0` for no,
#' `1` for FIC-based univariate ordering, `2` for Vecchia-based univariate
#' ordering, and `3` for univariate reordering, which appeared faster than `2`
#' @param NLevel1 first level Monte Carlo sample size
#' @param NLevel2 second level Monte Carlo sample size
#' @param verbose verbose or not
#' @param retlog TRUE or FALSE for whether to return loglk or not
#' @param ... could be
#' m_ord for conditioning set size for reordering
#' @return estimated MVT probability and estimation error
#'
#' @export
pmvt_MLMC <- function(lower, upper, delta, df, locs = NULL, covName = "matern15_isotropic",
covParms = c(1.0, 0.1, 0.0), m1 = 30, m2 = 100, sigma = NULL, reorder = 0,
NLevel1 = 12, NLevel2 = 1e4, verbose = FALSE, retlog = FALSE, ...) {
# standardize the input MVN prob -----------------------------
lower <- lower - delta
upper <- upper - delta
if (is.null(sigma)) {
n <- nrow(locs)
use_sigma <- FALSE
margin_sd <- sqrt(covParms[1])
upper <- upper / margin_sd
lower <- lower / margin_sd
covParms[1] <- 1
} else {
n <- nrow(sigma)
use_sigma <- TRUE
margin_sd <- sqrt(diag(sigma))
upper <- upper / margin_sd
lower <- lower / margin_sd
sigma <- t(t(sigma / margin_sd) / margin_sd)
}
if (any(upper < lower)) {
stop("Invalid MVN probability. Truncated marginal
probabilities have negative value(s)\n")
}
if (m1 > m2) {
stop("m1 should be greater than m2 when using
Multi-level Monte Carlo(MLMC)\n")
}
lower_upper <- matrix(0, n, 2)
lower_upper[, 1] <- lower
lower_upper[, 2] <- upper
lower <- lower_upper[, 1]
upper <- lower_upper[, 2]
# reorder --------------------------------
if (is.null(list(...)[["m_ord"]])) {
m_ord <- m1
} else {
m_ord <- list(...)[["m_ord"]]
}
if (reorder == 1) {
if (use_sigma) {
ord <- FIC_reorder_univar(lower, upper, m_ord, covMat = sigma)
} else {
ord <- FIC_reorder_univar(
lower, upper, m_ord, locs, covName,
covParms
)
}
lower <- lower[ord]
upper <- upper[ord]
if (use_sigma) {
sigma <- sigma[ord, ord, drop = FALSE]
} else {
locs <- locs[ord, , drop = FALSE]
}
} else if (reorder == 2) {
if (use_sigma) {
ord <- Vecc_reorder(lower, upper, m_ord, covMat = sigma)$order
} else {
ord <- Vecc_reorder(
lower, upper, m_ord, locs, covName, covParms
)$order
}
lower <- lower[ord]
upper <- upper[ord]
if (use_sigma) {
sigma <- sigma[ord, ord, drop = FALSE]
} else {
locs <- locs[ord, , drop = FALSE]
}
} else if (reorder == 3) {
if (!use_sigma) {
cov_func_GpGp <- utils::getFromNamespace(covName, "GpGp")
sigma <- cov_func_GpGp(covParms, locs)
}
ord <- univar_order(lower, upper, sigma)
lower <- lower[ord]
upper <- upper[ord]
if (use_sigma) {
sigma <- sigma[ord, ord, drop = FALSE]
} else {
locs <- locs[ord, , drop = FALSE]
}
}
# find nearest neighbors for Vecchia --------------------------------
if (use_sigma) {
NN_m2 <- find_nn_corr(sigma, m2)
NN_m1 <- NN_m2[, 1:(m1 + 1)]
} else {
NN_m2 <- GpGp::find_ordered_nn(locs, m2)
NN_m1 <- NN_m2[, 1:(m1 + 1)]
}
# find Vecchia approx object -----------------------------------
if (use_sigma) {
vecc_obj_m1 <- vecc_cond_mean_var_sp(NN_m1, covMat = sigma)
vecc_obj_m2 <- vecc_cond_mean_var_sp(NN_m2, covMat = sigma)
} else {
vecc_obj_m1 <- vecc_cond_mean_var_sp(NN_m1,
locs = locs, covName = covName,
covParms = covParms
)
vecc_obj_m2 <- vecc_cond_mean_var_sp(NN_m2,
locs = locs, covName = covName,
covParms = covParms
)
}
# find tilting parameter beta -----------------------------------
trunc_expect <- truncnorm::etruncnorm(lower, upper)
x0 <- c(trunc_expect, rep(0, n))
x0[2 * n] <- sqrt(df)
x0[n] <- log(x0[2 * n])
solv_idea_5_sp <- nleqslv::nleqslv(
x = x0, fn = gradpsiT_idea5, veccCondMeanVarObj = vecc_obj_m1,
a = lower, b = upper, nu = df, global = "pwldog", method = "Broyden"
)
soln <- solv_idea_5_sp$x
exitflag <- solv_idea_5_sp$termcd
if (!(exitflag %in% c(1, 2)) || !all.equal(solv_idea_5_sp$fvec, rep(0, length(x0)))) {
warning("Did not find a solution to the nonlinear system in `pmvt`!")
}
soln[n] <- exp(soln[n])
x <- soln[1:n]
beta <- soln[(n + 1):(2 * n)]
eta <- beta[n]
# compute MVT probs and est error ---------------------------------
const <- log(2 * pi) / 2 - lgamma(df / 2) - (df / 2 - 1) * log(2) +
TruncatedNormal::lnNpr(-eta, Inf) + 0.5 * eta^2
seed <- round(runif(1) * 1e6)
set.seed(seed)
exp_psi_m1 <- sample_psiT_idea5_cpp(vecc_obj_m1, lower, upper, df,
beta = beta, N_level1 = NLevel1,
N_level2 = NLevel2
)
set.seed(seed)
exp_psi_m2 <- sample_psiT_idea5_cpp(vecc_obj_m2, lower, upper, df,
beta = beta, N_level1 = 1,
N_level2 = NLevel2
)
if (retlog) {
exponent <- min(exp_psi[[2]])
# correction using exp_psi_m2
log_est_prob <- exponent +
log(mean(exp_psi_m1[[1]] * exp(exp_psi_m1[[2]] - exponent)) +
exp_psi_m2[[1]][1] * exp(exp_psi_m2[[2]][1] - exponent) -
exp_psi_m1[[1]][1] * exp(exp_psi_m1[[2]][1] - exponent)) + const
return(log_est_prob)
} else {
exp_psi <- exp_psi_m1[[1]] * exp(exp_psi_m1[[2]])
exp_psi_m2 <- exp_psi_m2[[1]] * exp(exp_psi_m2[[2]])
# correction using exp_psi_m2
est_prob <- (mean(exp_psi) + (exp_psi_m2[1] - exp_psi[1])) * exp(const)
est_prob_err <- stats::sd(exp_psi) / sqrt(NLevel1) * exp(const)
attr(est_prob, "error") <- est_prob_err
return(est_prob)
}
}
# TEST -------------------------------------------------------
# library(VeccTMVN)
# library(TruncatedNormal)
# library(GpGp)
#
# ## example MVN probabilities --------------------------------
# set.seed(123)
# n1 <- 10
# n2 <- 10
# n <- n1 * n2
# locs <- as.matrix(expand.grid((1:n1) / n1, (1:n2) / n2))
# covparms <- c(2, 0.3, 0)
# nu <- 10
# cov_mat <- matern15_isotropic(covparms, locs)
# a_list <- list(rep(-Inf, n), rep(-1, n), -runif(n) * 2 - 4)
# b_list <- list(rep(-2, n), rep(1, n), -runif(n) * 2)
#
# ## Compute MVN probs --------------------------------
# N_level1 <- 12 # Level 1 MC size
# N_level2 <- 1e4 # Level 2 MC size
# m <- 30 # num of nearest neighbors
# for (i in 1:length(a_list)) {
# a <- a_list[[i]]
# b <- b_list[[i]]
# ### Compute MVN prob with idea V -----------------------
# est_Vecc <- VeccTMVN::pmvt(a, b, 0, nu, locs, covName = "matern15_isotropic",
# covParms = covparms, m = m, verbose = FALSE)
# est_Vecc_MLMC <- VeccTMVN::pmvt_MLMC(a, b, 0, nu, locs, covName = "matern15_isotropic",
# covParms = covparms, m1 = m, m2 = 2 * m, verbose = FALSE)
# est_TN <- TruncatedNormal::pmvt(rep(0, n), cov_mat, nu, lb = a, ub = b)
# cat(
# "est_Vecc", est_Vecc, "err_Vecc", attributes(est_Vecc)$error, "\n"
# )
# cat(
# "est_Vecc_MLMC", est_Vecc_MLMC, "err_Vecc", attributes(est_Vecc_MLMC)$error,
# "\n"
# )
# cat(
# "est_TN", est_TN, "err_TN", attributes(est_TN)$relerr * est_TN, "\n"
# )
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.