Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, message = FALSE)
library(WLogit)
library(tibble)
library(ggplot2)
set.seed(123456)
## ----install pacakge, eval=FALSE----------------------------------------------
# install.packages("WLogit", repos = "http://cran.us.r-project.org")
## ----generate Sigma-----------------------------------------------------------
p <- 500 # number of variables
d <- 10 # number of actives
n <- 100 # number of samples
actives <- c(1:d)
nonacts <- c(1:p)[-actives]
Sigma <- matrix(0, p, p)
Sigma[actives, actives] <- 0.3
Sigma[-actives, actives] <- 0.5
Sigma[actives, -actives] <- 0.5
Sigma[-actives, -actives] <- 0.7
diag(Sigma) <- rep(1,p)
## ----X, eval=FALSE------------------------------------------------------------
# X <- MASS::mvrnorm(n = n, mu=rep(0,p), Sigma, tol = 1e-6, empirical = FALSE)
# beta <- rep(0,p)
# beta[actives] <- 1
# pr <- CalculPx(X,beta=beta)
# y <- rbinom(n,1,pr)
## ---- echo=FALSE--------------------------------------------------------------
data(X)
data(y)
data(beta)
## ----load WLogit, eval=FALSE--------------------------------------------------
# library(WLogit)
## ----WLogit model, eval=FALSE-------------------------------------------------
# mod <- WhiteningLogit(X = X, y = y)
## ---- echo=FALSE--------------------------------------------------------------
data(test)
mod <- test
## ----beta---------------------------------------------------------------------
beta_min <- mod$beta.min
head(beta_min)
## ----variable selection,fig.width=4,fig.height=3------------------------------
beta_min <- mod$beta.min
df_beta <- data.frame(beta_est=beta_min, Status = ifelse(beta==0, "non-active", "active"))
df_plot <- df_beta[which(beta_min!=0), ]
df_plot$index <- which(beta_min!=0)
ggplot2::ggplot(data=df_plot, mapping=aes(y=beta_est, x=index, color=Status))+geom_point()+
theme_bw()+ylab("Estimated coefficients")+xlab("Indices of selected variables")
## ----lasso--------------------------------------------------------------------
library(glmnet)
cvfit = cv.glmnet(X, y, family = "binomial", type.measure = "class", intercept=FALSE)
## ----res lasso----------------------------------------------------------------
beta_lasso <- coef(cvfit, s = "lambda.min")
head(beta_lasso)
## ----lasso selection,fig.width=4,fig.height=3---------------------------------
beta_lasso <- as.vector(beta_lasso)[-1]
df_beta <- data.frame(beta_est=beta_lasso, Status = ifelse(beta==0, "non-active", "active"))
df_plot <- df_beta[which(beta_lasso!=0), ]
df_plot$index <- which(beta_lasso!=0)
ggplot2::ggplot(data=df_plot, mapping=aes(y=beta_est, x=index, color=Status))+geom_point()+
theme_bw()+ylab("Estimated coefficients by glmnet")+xlab("Indices of selected variables")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.