Nothing
#' @title Extract amplitude from a signal
#'
#' @description Extracts the amplitude from a signal using the continuous wavelet transform using a Morlet wavelet.
#' The extraction of the amplitude is useful for cyclostratigraphic studies because the amplitude of
#' an astronomical cycle is modulated by higher order astronomical cycles.
#'
#'@param signal Input signal from which the amplitude is extracted any signal in which the first column is
#'depth/time and the second column is the proxy record from which the amplitude is extracted
#'@param pts The pts parameter specifies how many points to the left/right up/down the peak detect algorithm goes in detecting
#'a peak. The peak detecting algorithm works by comparing the values left/right up/down of it, if the values are both higher or lower
#'then the value a peak. To deal with error produced by this algorithm the pts parameter can be changed which can
#'aid in peak detection. Usually increasing the pts parameter means more peak certainty, however it also means that minor peaks might not be
#'picked up by the algorithm \code{Default=3}
#'@param genplot If set to TRUE a plot with extracted amplitude will be displayed \code{Default=FALSE}.
#'@param remean Prior to analysis the mean is subtracted from the data set to re-mean set \code{Default=TRUE}.
#'@param ver_results To verify the amplitude extraction is representative of the amplitude
#'extracted using the \code{\link{extract_amplitude}} function the results can be compared to the amplitude extracted
#'using the \code{\link{Hilbert_transform}} if the mean difference is more then 5% one might need to reconsider
#'whether the input contains a reliable enough signal with high a enough amplitude modulation to actually extract an amplitude from. \code{Default=FALSE}.
#'@param keep_editable Keep option to add extra features after plotting \code{Default=FALSE}
#'
#' @author
#' Code based on the \link[WaveletComp]{reconstruct} function of the 'WaveletComp' R package
#' which is based on the wavelet 'MATLAB' code written by Christopher Torrence and Gibert P. Compo.
#' The assignment of the standard deviation of the uncertainty of the wavelet
#' is based on the work of Gabor (1946) and Russell et al., (2016)
#'
#' @references
#'Angi Roesch and Harald Schmidbauer (2018). WaveletComp: Computational
#'Wavelet Analysis. R package version 1.1.
#'\url{https://CRAN.R-project.org/package=WaveletComp}
#'
#'Gouhier TC, Grinsted A, Simko V (2021). R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. (Version 0.20.21),
#'\url{https://github.com/tgouhier/biwavelet}
#'
#'Torrence, C., and G. P. Compo. 1998. A Practical Guide to Wavelet Analysis.
#'Bulletin of the American Meteorological Society 79:61-78.
#'\url{https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf}
#'
#'Morlet, Jean, Georges Arens, Eliane Fourgeau, and Dominique Glard.
#'"Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media.
#'" Geophysics 47, no. 2 (1982): 203-221.
#' \url{https://pubs.geoscienceworld.org/geophysics/article/47/2/203/68601/Wave-propagation-and-sampling-theory-Part-I}
#'
#'J. Morlet, G. Arens, E. Fourgeau, D. Giard;
#' Wave propagation and sampling theory; Part II, Sampling theory and complex waves.
#' Geophysics 1982 47 (2): 222–236. \url{https://pubs.geoscienceworld.org/geophysics/article/47/2/222/68604/Wave-propagation-and-sampling-theory-Part-II}
#'
#'@examples
#'\donttest{
#'#Extract amplitude of the 405 kyr eccentricity cycle from the the magnetic
#'# susceptibility data set of De pas et al., (2018)
#'#Perform the CWT on the magnetic susceptibility data set of Pas et al., (2018)
#'
#'mag_wt <- analyze_wavelet(data = mag,
#' dj = 1/100,
#' lowerPeriod = 0.1,
#' upperPeriod = 254,
#' verbose = FALSE,
#' omega_nr = 10)
#'
#'#Track the 405 kyr eccentricity cycle in a wavelet spectra
#'
#'#mag_track <- track_period_wavelet(astro_cycle = 405,
#'# wavelet=mag_wt,
#'# n.levels = 100,
#'# periodlab = "Period (metres)",
#'# x_lab = "depth (metres)")
#'
#'#Instead of tracking, the tracked solution data set mag_track_solution
#'#is used
#'mag_track <- mag_track_solution
#'
#' mag_track_complete <- completed_series(
#' wavelet = mag_wt,
#' tracked_curve = mag_track,
#' period_up = 1.2,
#' period_down = 0.8,
#' extrapolate = TRUE,
#' genplot = FALSE
#' )
#'
#'#Smooth the completed tracking of the 405 kyr eccentricity cycle in the wavelet spectra
#'
#'mag_track_complete <- loess_auto(time_series = mag_track_complete,
#' genplot = FALSE, print_span = FALSE)
#'
#'
#'
#'
#'mag_405_ecc <- extract_signal(
#'tracked_cycle_curve = mag_track_complete,
#'wavelet = mag_wt,
#'period_up = 1.2,
#'period_down = 0.8,
#'add_mean = TRUE,
#'tracked_cycle_period = 405,
#'extract_cycle = 405,
#'tune = FALSE,
#'plot_residual = FALSE
#')
#'
#'#extract the amplitude of the 405 kyr eccentricity cycle
#'mag_ampl <- extract_amplitude(
#'signal = mag_405_ecc,
#'pts=3,
#'genplot = FALSE,
#'ver_results = FALSE,
#'keep_editable=FALSE)
#'
#'}
#'@return
#'Returns a matrix with 2 columns.
#'The first column is depth/time.
#'The second column is the extracted amplitude
#'
#' @export
#' @importFrom WaveletComp reconstruct
extract_amplitude <- function(signal = NULL,
pts=3,
genplot = FALSE,
remean = TRUE,
ver_results = FALSE,
keep_editable = FALSE) {
mean_signal <- mean(signal[, 2])
signal[, 2] <- signal[, 2] - mean_signal
LP <- (signal[2, 1] - signal[1, 1])
UP <- (signal[nrow(signal), 1] - signal[1, 1])
hilb <- Hilbert_transform(signal)
wavelet <- analyze_wavelet(
data = signal,
dj = 1 / 200,
lowerPeriod = LP,
upperPeriod = UP,
verbose = FALSE,
omega_nr = 0.1
)
my.w <- wavelet
my.data <- cbind(wavelet$x, wavelet$y)
filtered_cycle <- my.data[, 1]
filtered_cycle <- as.data.frame(filtered_cycle)
filtered_cycle$value <- NA
Wave = my.w$Ampl
Power = my.w$Power
nc = my.w$nc
nr = my.w$nr
dt = my.w$dt
dj = my.w$dj
Scale = my.w$Scale
Period = my.w$Period
rec.waves = matrix(0, nrow = nr, ncol = nc)
for (s.ind in seq_len(nr)) {
rec.waves[s.ind, ] = (Wave[s.ind, ] / sqrt(Scale[s.ind])) *
dj * sqrt(dt) / (pi ^ (-1 / 4))
}
#re-scaling of the data against the standard deviation of the maximum peaks of the input data
peaks_max <- max_detect(signal,pts=pts)
value <- colSums(rec.waves, na.rm = T)
value <- as.numeric(value)
filtered_cycle[, 2] <- value
filtered_cycle[, 2] <-
(filtered_cycle[, 2]) * (sd(peaks_max[, 2]) / sd(value))
if (remean == TRUE) {
filtered_cycle[, 2] <- filtered_cycle[, 2] + mean_signal
my.data[, 2] <- my.data[, 2] + mean_signal
}
ampl <- filtered_cycle
if (genplot == TRUE) {
if (keep_editable == FALSE) {
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
}
par(mfrow = c(2, 1))
par(mar = c(4, 4, 1, 1))
plot(my.data, type = "l")
lines(ampl)
plot(ampl, type = "l")
}
if (ver_results == TRUE) {
hilb <- Hilbert_transform(my.data)
if (mean(ampl[, 2] / hilb[, 2]) > 1.05 |
mean(ampl[, 2] / hilb[, 2]) < 0.95) {
cat(
"Mean difference between the amplitude extracted via the Hilbert Transform and the amplitude extracted
using wavelets is larger then 5% therefore results might not be representative"
)
if ((mean(ampl[, 2] / hilb[, 2]) < 1.05) &
(mean(ampl[, 2] / hilb[, 2]) > 0.95)) {
cat(
"Mean difference between the amplitude extracted via the Hilbert Transform and the amplitude extracted
using wavelets is smaller then 5% hence results are representative"
)
}
}
}
return(ampl)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.