Nothing
test_that("vcov arg works in vcov(), summary(), and anova() for glm_weightit", {
test_data <- readRDS(test_path("fixtures", "test_data.rds"))
set.seed(123)
test_data$clus <- sample(1:50, nrow(test_data), replace = TRUE)
W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
data = test_data, method = "glm", estimand = "ATE", quick = TRUE)
fit_none <- glm_weightit(Y_C ~ A * (X1),
data = test_data, weightit = W, vcov = "none")
fit_asympt <- glm_weightit(Y_C ~ A * (X1),
data = test_data, weightit = W, vcov = "asympt")
fit_hc0 <- glm_weightit(Y_C ~ A * (X1),
data = test_data, weightit = W, vcov = "HC0")
set.seed(123)
fit_bs <- glm_weightit(Y_C ~ A * (X1),
data = test_data, weightit = W, vcov = "BS", R = 25)
set.seed(123)
fit_fwb <- glm_weightit(Y_C ~ A * (X1),
data = test_data, weightit = W, vcov = "FWB", R = 25)
fit_asympt_clus <- glm_weightit(Y_C ~ A * (X1),
data = test_data, weightit = W, vcov = "asympt",
cluster = ~clus)
fit_hc0_clus <- glm_weightit(Y_C ~ A * (X1),
data = test_data, weightit = W, vcov = "HC0",
cluster = ~clus)
set.seed(123)
fit_bs_clus <- glm_weightit(Y_C ~ A * (X1),
data = test_data, weightit = W, vcov = "BS", R = 25,
cluster = ~clus)
set.seed(123)
fit_fwb_clus <- glm_weightit(Y_C ~ A * (X1),
data = test_data, weightit = W, vcov = "FWB", R = 25,
cluster = ~clus)
expect_equal(vcov(fit_none, vcov = "asympt"),
vcov(fit_asympt))
expect_equal(vcov(fit_none, vcov = "HC0"),
vcov(fit_hc0))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "BS", R = 25),
vcov(fit_bs))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "FWB", R = 25),
vcov(fit_fwb))
expect_equal(vcov(fit_none, vcov = "asympt", cluster = ~clus),
vcov(fit_asympt_clus))
expect_equal(vcov(fit_none, vcov = "HC0", cluster = ~clus),
vcov(fit_hc0_clus))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "BS", R = 25, cluster = ~clus),
vcov(fit_bs_clus))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "FWB", R = 25, cluster = ~clus),
vcov(fit_fwb_clus))
expect_equal(vcov(fit_asympt_clus, vcov = "asympt", cluster = NULL),
vcov(fit_asympt))
expect_equal(vcov(fit_asympt_clus, vcov = "asympt"),
vcov(fit_asympt_clus))
expect_equal(vcov(fit_asympt_clus, vcov = "HC0", cluster = NULL),
vcov(fit_hc0))
expect_equal(vcov(fit_asympt_clus, vcov = "HC0"),
vcov(fit_hc0_clus))
expect_equal(summary(fit_asympt, vcov = "HC0")$coef,
summary(fit_hc0)$coef)
expect_equal(summary(fit_asympt, vcov = "HC0", cluster = ~clus)$coef,
summary(fit_hc0_clus)$coef)
expect_equal(summary(fit_asympt_clus, vcov = "HC0", cluster = NULL)$coef,
summary(fit_hc0)$coef)
expect_equal(summary(fit_asympt_clus, vcov = "HC0")$coef,
summary(fit_hc0_clus)$coef)
set.seed(123)
expect_equal(summary(fit_asympt_clus, vcov = "BS", R = 25)$coef,
summary(fit_bs_clus)$coef)
fit_small <- glm_weightit(Y_C ~ A,
data = test_data, weightit = W, vcov = "none")
expect_equal(anova(fit_asympt, fit_small),
anova(fit_none, fit_small, vcov = "asympt"))
expect_equal(anova(fit_hc0, fit_small),
anova(fit_none, fit_small, vcov = "HC0"))
expect_equal(anova(fit_asympt_clus, fit_small),
anova(fit_none, fit_small, vcov = "asympt", cluster = ~clus))
expect_equal(anova(fit_hc0_clus, fit_small),
anova(fit_none, fit_small, vcov = "HC0", cluster = ~clus))
set.seed(123)
expect_equal(anova(fit_bs_clus, fit_small),
anova(fit_none, fit_small, vcov = "BS", R = 25, cluster = ~clus))
expect_error(anova(fit_asympt_clus, fit_small, vcov = "none"),
"No variance matrix was found")
fit_small_hc0 <- glm_weightit(Y_C ~ A,
data = test_data, weightit = W, vcov = "HC0")
expect_warning(anova(fit_asympt, fit_small_hc0),
"Different `vcov` types detected")
expect_no_condition(anova(fit_hc0, fit_small_hc0))
expect_no_condition(anova(fit_asympt, fit_small_hc0, vcov = "asympt"))
expect_equal(update(fit_none, vcov = "HC0"),
fit_hc0)
expect_equal(update(fit_none, vcov = "asympt"),
fit_asympt)
expect_equal(update(fit_hc0, vcov = "asympt"),
fit_asympt)
set.seed(123)
expect_equal(fit_bs,
update(fit_none, vcov = "BS", R = 25))
set.seed(123)
expect_equal(fit_fwb,
update(fit_none, vcov = "FWB", R = 25))
expect_equal(update(fit_hc0, cluster = ~clus),
fit_hc0_clus)
expect_equal(update(fit_asympt, cluster = ~clus),
fit_asympt_clus)
expect_equal(update(fit_asympt_clus, cluster = NULL),
fit_asympt)
#Note: need to remove call because order of arguments is different
.remove_call <- function(x) {
x$call <- NULL
x
}
set.seed(123)
expect_equal(.remove_call(update(fit_bs, R = 25, cluster = ~clus)),
.remove_call(fit_bs_clus))
set.seed(123)
expect_equal(.remove_call(update(fit_fwb, cluster = ~clus, R = 25)),
.remove_call(fit_fwb_clus))
})
test_that("vcov arg works in vcov(), summary(), and anova() for ordinal_weightit", {
test_data <- readRDS(test_path("fixtures", "test_data.rds"))
set.seed(123)
test_data$clus <- sample(1:50, nrow(test_data), replace = TRUE)
test_data$Y_O <- with(test_data, factor(findInterval(Y_C, quantile(Y_C, seq(0, 1, length = 5)),
all.inside = TRUE), ordered = TRUE))
W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
data = test_data, method = "glm", estimand = "ATE")
fit_none <- ordinal_weightit(Y_O ~ A * (X1),
data = test_data, weightit = W, vcov = "none")
fit_asympt <- ordinal_weightit(Y_O ~ A * (X1),
data = test_data, weightit = W, vcov = "asympt")
fit_hc0 <- ordinal_weightit(Y_O ~ A * (X1),
data = test_data, weightit = W, vcov = "HC0")
set.seed(123)
fit_bs <- ordinal_weightit(Y_O ~ A * (X1),
data = test_data, weightit = W, vcov = "BS", R = 25)
set.seed(123)
fit_fwb <- ordinal_weightit(Y_O ~ A * (X1),
data = test_data, weightit = W, vcov = "FWB", R = 25)
fit_asympt_clus <- ordinal_weightit(Y_O ~ A * (X1),
data = test_data, weightit = W, vcov = "asympt",
cluster = ~clus)
fit_hc0_clus <- ordinal_weightit(Y_O ~ A * (X1),
data = test_data, weightit = W, vcov = "HC0",
cluster = ~clus)
set.seed(123)
fit_bs_clus <- ordinal_weightit(Y_O ~ A * (X1),
data = test_data, weightit = W, vcov = "BS", R = 25,
cluster = ~clus)
set.seed(123)
fit_fwb_clus <- ordinal_weightit(Y_O ~ A * (X1),
data = test_data, weightit = W, vcov = "FWB", R = 25,
cluster = ~clus)
expect_equal(vcov(fit_none, vcov = "asympt"),
vcov(fit_asympt))
expect_equal(vcov(fit_none, vcov = "HC0"),
vcov(fit_hc0))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "BS", R = 25),
vcov(fit_bs))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "FWB", R = 25),
vcov(fit_fwb))
expect_equal(vcov(fit_none, vcov = "asympt", cluster = ~clus),
vcov(fit_asympt_clus))
expect_equal(vcov(fit_none, vcov = "HC0", cluster = ~clus),
vcov(fit_hc0_clus))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "BS", R = 25, cluster = ~clus),
vcov(fit_bs_clus))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "FWB", R = 25, cluster = ~clus),
vcov(fit_fwb_clus))
expect_equal(vcov(fit_asympt_clus, vcov = "asympt", cluster = NULL),
vcov(fit_asympt))
expect_equal(vcov(fit_asympt_clus, vcov = "asympt"),
vcov(fit_asympt_clus))
expect_equal(vcov(fit_asympt_clus, vcov = "HC0", cluster = NULL),
vcov(fit_hc0))
expect_equal(vcov(fit_asympt_clus, vcov = "HC0"),
vcov(fit_hc0_clus))
expect_equal(summary(fit_asympt, vcov = "HC0")$coef,
summary(fit_hc0)$coef)
expect_equal(summary(fit_asympt, vcov = "HC0", cluster = ~clus)$coef,
summary(fit_hc0_clus)$coef)
expect_equal(summary(fit_asympt_clus, vcov = "HC0", cluster = NULL)$coef,
summary(fit_hc0)$coef)
expect_equal(summary(fit_asympt_clus, vcov = "HC0")$coef,
summary(fit_hc0_clus)$coef)
set.seed(123)
expect_equal(summary(fit_asympt_clus, vcov = "BS", R = 25)$coef,
summary(fit_bs_clus)$coef)
fit_small <- ordinal_weightit(Y_O ~ A,
data = test_data, weightit = W, vcov = "none")
expect_equal(anova(fit_asympt, fit_small),
anova(fit_none, fit_small, vcov = "asympt"))
expect_equal(anova(fit_hc0, fit_small),
anova(fit_none, fit_small, vcov = "HC0"))
expect_equal(anova(fit_asympt_clus, fit_small),
anova(fit_none, fit_small, vcov = "asympt", cluster = ~clus))
expect_equal(anova(fit_hc0_clus, fit_small),
anova(fit_none, fit_small, vcov = "HC0", cluster = ~clus))
set.seed(123)
expect_equal(anova(fit_bs_clus, fit_small),
anova(fit_none, fit_small, vcov = "BS", R = 25, cluster = ~clus))
expect_error(anova(fit_asympt_clus, fit_small, vcov = "none"),
"No variance matrix was found")
fit_small_hc0 <- ordinal_weightit(Y_O ~ A,
data = test_data, weightit = W, vcov = "HC0")
expect_warning(anova(fit_asympt, fit_small_hc0),
"Different `vcov` types detected")
expect_no_condition(anova(fit_hc0, fit_small_hc0))
expect_no_condition(anova(fit_asympt, fit_small_hc0, vcov = "asympt"))
expect_equal(summary(update(fit_none, vcov = "HC0")),
summary(fit_hc0))
expect_equal(summary(update(fit_none, vcov = "asympt")),
summary(fit_asympt))
expect_equal(update(fit_hc0, vcov = "asympt"),
fit_asympt)
set.seed(123)
expect_equal(fit_bs,
update(fit_none, vcov = "BS", R = 25))
set.seed(123)
expect_equal(fit_fwb,
update(fit_none, vcov = "FWB", R = 25))
expect_equal(update(fit_hc0, cluster = ~clus),
fit_hc0_clus)
expect_equal(update(fit_asympt, cluster = ~clus),
fit_asympt_clus)
expect_equal(update(fit_asympt_clus, cluster = NULL),
fit_asympt)
#Note: need to remove call because order of arguments is different
.remove_call <- function(x) {
x$call <- NULL
x
}
set.seed(123)
expect_equal(.remove_call(update(fit_bs, R = 25, cluster = ~clus)),
.remove_call(fit_bs_clus))
set.seed(123)
expect_equal(.remove_call(update(fit_fwb, cluster = ~clus, R = 25)),
.remove_call(fit_fwb_clus))
})
test_that("vcov arg works in vcov(), summary(), and anova() for multinom_weightit", {
test_data <- readRDS(test_path("fixtures", "test_data.rds"))
test_data$Y_M <- with(test_data, factor(findInterval(Y_C, quantile(Y_C, seq(0, 1, length = 5)),
all.inside = TRUE)))
set.seed(123)
test_data$off <- runif(nrow(test_data))
test_data$clus <- sample(1:50, nrow(test_data), replace = TRUE)
W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
data = test_data, method = "glm", estimand = "ATE")
fit_none <- multinom_weightit(Y_M ~ A * (X1),
data = test_data, weightit = W, vcov = "none")
fit_asympt <- multinom_weightit(Y_M ~ A * (X1),
data = test_data, weightit = W, vcov = "asympt")
fit_hc0 <- multinom_weightit(Y_M ~ A * (X1),
data = test_data, weightit = W, vcov = "HC0")
set.seed(123)
fit_bs <- multinom_weightit(Y_M ~ A * (X1),
data = test_data, weightit = W, vcov = "BS", R = 25)
set.seed(123)
fit_fwb <- multinom_weightit(Y_M ~ A * (X1),
data = test_data, weightit = W, vcov = "FWB", R = 25)
fit_asympt_clus <- multinom_weightit(Y_M ~ A * (X1),
data = test_data, weightit = W, vcov = "asympt",
cluster = ~clus)
fit_hc0_clus <- multinom_weightit(Y_M ~ A * (X1),
data = test_data, weightit = W, vcov = "HC0",
cluster = ~clus)
set.seed(123)
fit_bs_clus <- multinom_weightit(Y_M ~ A * (X1),
data = test_data, weightit = W, vcov = "BS", R = 25,
cluster = ~clus)
set.seed(123)
fit_fwb_clus <- multinom_weightit(Y_M ~ A * (X1),
data = test_data, weightit = W, vcov = "FWB", R = 25,
cluster = ~clus)
expect_equal(vcov(fit_none, vcov = "asympt"),
vcov(fit_asympt))
expect_equal(vcov(fit_none, vcov = "HC0"),
vcov(fit_hc0))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "BS", R = 25),
vcov(fit_bs))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "FWB", R = 25),
vcov(fit_fwb))
expect_equal(vcov(fit_none, vcov = "asympt", cluster = ~clus),
vcov(fit_asympt_clus))
expect_equal(vcov(fit_none, vcov = "HC0", cluster = ~clus),
vcov(fit_hc0_clus))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "BS", R = 25, cluster = ~clus),
vcov(fit_bs_clus))
set.seed(123)
expect_equal(vcov(fit_none, vcov = "FWB", R = 25, cluster = ~clus),
vcov(fit_fwb_clus))
expect_equal(vcov(fit_asympt_clus, vcov = "asympt", cluster = NULL),
vcov(fit_asympt))
expect_equal(vcov(fit_asympt_clus, vcov = "asympt"),
vcov(fit_asympt_clus))
expect_equal(vcov(fit_asympt_clus, vcov = "HC0", cluster = NULL),
vcov(fit_hc0))
expect_equal(vcov(fit_asympt_clus, vcov = "HC0"),
vcov(fit_hc0_clus))
expect_equal(summary(fit_asympt, vcov = "HC0")$coef,
summary(fit_hc0)$coef)
expect_equal(summary(fit_asympt, vcov = "HC0", cluster = ~clus)$coef,
summary(fit_hc0_clus)$coef)
expect_equal(summary(fit_asympt_clus, vcov = "HC0", cluster = NULL)$coef,
summary(fit_hc0)$coef)
expect_equal(summary(fit_asympt_clus, vcov = "HC0")$coef,
summary(fit_hc0_clus)$coef)
set.seed(123)
expect_equal(summary(fit_asympt_clus, vcov = "BS", R = 25)$coef,
summary(fit_bs_clus)$coef)
fit_small <- multinom_weightit(Y_M ~ A,
data = test_data, weightit = W, vcov = "none")
expect_equal(anova(fit_asympt, fit_small),
anova(fit_none, fit_small, vcov = "asympt"))
expect_equal(anova(fit_hc0, fit_small),
anova(fit_none, fit_small, vcov = "HC0"))
expect_equal(anova(fit_asympt_clus, fit_small),
anova(fit_none, fit_small, vcov = "asympt", cluster = ~clus))
expect_equal(anova(fit_hc0_clus, fit_small),
anova(fit_none, fit_small, vcov = "HC0", cluster = ~clus))
set.seed(123)
expect_equal(anova(fit_bs_clus, fit_small),
anova(fit_none, fit_small, vcov = "BS", R = 25, cluster = ~clus))
expect_error(anova(fit_asympt_clus, fit_small, vcov = "none"),
"No variance matrix was found")
fit_small_hc0 <- multinom_weightit(Y_M ~ A,
data = test_data, weightit = W, vcov = "HC0")
expect_warning(anova(fit_asympt, fit_small_hc0),
"Different `vcov` types detected")
expect_no_condition(anova(fit_hc0, fit_small_hc0))
expect_no_condition(anova(fit_asympt, fit_small_hc0, vcov = "asympt"))
expect_equal(summary(update(fit_none, vcov = "HC0")),
summary(fit_hc0))
expect_equal(summary(update(fit_none, vcov = "asympt")),
summary(fit_asympt))
expect_equal(update(fit_hc0, vcov = "asympt"),
fit_asympt)
set.seed(123)
expect_equal(fit_bs,
update(fit_none, vcov = "BS", R = 25))
set.seed(123)
expect_equal(fit_fwb,
update(fit_none, vcov = "FWB", R = 25))
expect_equal(update(fit_hc0, cluster = ~clus),
fit_hc0_clus)
expect_equal(update(fit_asympt, cluster = ~clus),
fit_asympt_clus)
expect_equal(update(fit_asympt_clus, cluster = NULL),
fit_asympt)
#Note: need to remove call because order of arguments is different
.remove_call <- function(x) {
x$call <- NULL
x
}
set.seed(123)
expect_equal(.remove_call(update(fit_bs, R = 25, cluster = ~clus)),
.remove_call(fit_bs_clus))
set.seed(123)
expect_equal(.remove_call(update(fit_fwb, cluster = ~clus, R = 25)),
.remove_call(fit_fwb_clus))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.