inst/doc/spatialRt.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup--------------------------------------------------------------------
library(WhiteLabRt)

## -----------------------------------------------------------------------------
data("sample_multi_site")
data("transfer_matrix")

## -----------------------------------------------------------------------------
site_names <- colnames(sample_multi_site)[c(2, 3)]
Y <- matrix(integer(1), nrow = nrow(sample_multi_site), ncol = 2)
for(i in 1:nrow(Y)) {
  for(j in c(2, 3)) {
    Y[i,j-1] <- as.integer(sample_multi_site[i,j])
  }
}
all(is.integer(Y))

## -----------------------------------------------------------------------------
sip <- si(14, 4.29, 1.18, leading0 = FALSE)

## ----runspatialrt,eval=F------------------------------------------------------
#  sample_m_hier <- spatialRt(report_dates = sample_multi_site$date,
#                   case_matrix = Y,
#                   transfer_matrix = transfer_matrix,
#                   v2 = FALSE,
#                   sip = sip, chains = 1)

## -----------------------------------------------------------------------------
data("sample_m_hier")
rstan::check_divergences(sample_m_hier)
rstan::check_hmc_diagnostics(sample_m_hier)

out <- rstan::extract(sample_m_hier)
# QC
# launch_shinystan(m_hier)

## -----------------------------------------------------------------------------
dim(out$M)
dim(out$xsigma)

data_l <- lapply(1:dim(out$M)[3], function(i) {
  data.frame(
    x      = 1:dim(out$M)[2],
    y_real = Y[, i],
    y      = apply(out$M[, , i], 2, mean),
    yl     = apply(out$M[, , i], 2, quantile, probs = 0.025),
    yh     = apply(out$M[, , i], 2, quantile, probs = 0.975),
    Rt     = apply(out$R[, , i], 2, mean),
    Rtl    = apply(out$R[, , i], 2, quantile, probs = 0.025),
    Rth    = apply(out$R[, , i], 2, quantile, probs = 0.975),
    region = site_names[i] # must be a string
  )
})

data_all <- do.call(rbind, data_l)
head(data_all)

# Summarise data
data_all_summarise <- aggregate(
  cbind(y, y_real, yl, yh, Rt, Rtl, Rth) ~ x + region,
  data = data_all,
  FUN = mean
)

head(data_all_summarise)

## -----------------------------------------------------------------------------
# Generate a color palette
regions <- unique(data_all_summarise$region)
# Define a set of distinct colors
colors <- c("red", "blue", "green", "purple", "orange", "brown",
            "pink", "yellow", "cyan", "magenta")
colors <- colors[1:length(regions)]
names(colors) <- regions

## ----fig.width=6.75,dev='png'-------------------------------------------------
# Plot expected cases
plot(
  x = as.integer(data_all_summarise$x), 
  y = as.numeric(data_all_summarise$y), 
  type = "n",
  xlab = "Days", 
  ylab = "Cases",
  main = "Expected Cases"
)

for (region_i in regions) {
  region_data <- subset(data_all_summarise, region == region_i)
  points(x = region_data$x, region_data$y_real, col = colors[region_i])
  polygon(
    c(region_data$x, rev(region_data$x)), 
    c(region_data$yl, rev(region_data$yh)), 
    col = adjustcolor(colors[region_i], alpha.f = 0.3), border = NA
  )
  lines(region_data$x, region_data$y, col = colors[region_i], lwd = 0.5)
}

legend("topright",
       legend = regions,
       col = colors,
       lty = rep(1, length(regions)), 
       cex = 0.8,
       pt.cex = 1.5 ) # Text size

## ----fig.width=6.75, dev='png'------------------------------------------------
# Plot R(t)
plot(
  data_all_summarise$x, data_all_summarise$Rt, 
  xlab = "Days", ylab = "Reproduction Number",
  type = "n",
  main = "R(t)",
  ylim = c(0, 5)
)
for (region_i in regions) {
  region_data <- subset(data_all_summarise, region == region_i)
  polygon(
    c(region_data$x, rev(region_data$x)), 
    c(region_data$Rtl, rev(region_data$Rth)), 
    col = adjustcolor(colors[region_i], alpha.f = 0.3), border = NA
  )
  lines(region_data$x, region_data$Rt, col = colors[region_i], lwd = 0.5)
}
abline(h = 1, col = "black", lwd = 1, lty = 1)
legend("topright",
       legend = regions,
       col = colors,
       lty = c(1, 1), 
       cex = 0.8,
       pt.cex = 1.5 ) # Text size

Try the WhiteLabRt package in your browser

Any scripts or data that you put into this service are public.

WhiteLabRt documentation built on Sept. 11, 2024, 7:23 p.m.