W2L1: 2-Wasserstein distance linear projections with an L_1 penalty

View source: R/W2L1.R

W2L1R Documentation

2-Wasserstein distance linear projections with an L_1 penalty

Description

2-Wasserstein distance linear projections with an L_1 penalty

Usage

W2L1(
  X,
  Y = NULL,
  theta = NULL,
  penalty = c("lasso", "ols", "mcp", "elastic.net", "selection.lasso", "scad", "mcp.net",
    "scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net",
    "grp.scad.net", "sparse.grp.lasso"),
  method = c("projection", "selection.variable", "location.scale", "scale"),
  transport.method = transport_options(),
  epsilon = 0.05,
  OTmaxit = 100,
  model.size = NULL,
  lambda = numeric(0),
  nlambda = 100L,
  lambda.min.ratio = NULL,
  alpha = 1,
  gamma = 1,
  tau = 0.5,
  groups = numeric(0),
  scale.factor = numeric(0),
  penalty.factor = NULL,
  group.weights = NULL,
  maxit = 500L,
  tol = 1e-07,
  irls.maxit = 100L,
  irls.tol = 0.001,
  infimum.maxit = NULL,
  display.progress = FALSE
)

Arguments

X

An n x p matrix of covariates

Y

An n x s matrix of predictions

theta

optional parameter matrix for selection methods. Should be p x s.

penalty

Form of penalty. One of "lasso", "ols", "mcp", "elastic.net","selection.lasso", "scad", "mcp.net", "scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp","grp.scad", "grp.mcp.net", "grp.scad.net", "sparse.grp.lasso"

method

"selection.variable" or "projection

transport.method

Method for calculating the Wasserstein distance. One of "exact", "sinkhorn", "greenkhorn","hilbert"

epsilon

Penalty parameter for Sinkhorn and Greenkhorn and optimal transport

OTmaxit

Maximum iterations for the optimal transport iterations

model.size

The maximum number of desired covariates. Defaults to the number of covariates.

lambda

Penalty parameter for lasso regression. See oem.

nlambda

Number of lambda values. See oem.

lambda.min.ratio

Minimum lambda ratio for self selected lambda. See oem.

alpha

elastic net mixing. See oem.

gamma

tuning parameters for SCAD and MCP. See oem.

tau

mixing parameter for sparse group lasso. See oem.

groups

A vector of grouping values. See oem.

scale.factor

Value to standardize the covariates by. Typically, is the standard deviation. Should have length 1 or length same as the number of covariates

penalty.factor

Penalty factor for OEM. See oem.

group.weights

Weights for group lasso. See oem.

maxit

Max iteration for OEM. See oem.

tol

Tolerance for OEM. See oem.

irls.maxit

IRLS max iterations for OEM. See oem.

irls.tol

IRLS tolerance for OEM. See oem.

infimum.maxit

Maximum number of iterations alternating optimization and Wasserstein distance calculation. Irrelevant for projection method.

display.progress

Display intermediate progress?

Value

Object of class WpProj


WpProj documentation built on May 29, 2024, 7:55 a.m.