W2L1 | R Documentation |
L_1
penalty2-Wasserstein distance linear projections with an L_1
penalty
W2L1(
X,
Y = NULL,
theta = NULL,
penalty = c("lasso", "ols", "mcp", "elastic.net", "selection.lasso", "scad", "mcp.net",
"scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net",
"grp.scad.net", "sparse.grp.lasso"),
method = c("projection", "selection.variable", "location.scale", "scale"),
transport.method = transport_options(),
epsilon = 0.05,
OTmaxit = 100,
model.size = NULL,
lambda = numeric(0),
nlambda = 100L,
lambda.min.ratio = NULL,
alpha = 1,
gamma = 1,
tau = 0.5,
groups = numeric(0),
scale.factor = numeric(0),
penalty.factor = NULL,
group.weights = NULL,
maxit = 500L,
tol = 1e-07,
irls.maxit = 100L,
irls.tol = 0.001,
infimum.maxit = NULL,
display.progress = FALSE
)
X |
An n x p matrix of covariates |
Y |
An n x s matrix of predictions |
theta |
optional parameter matrix for selection methods. Should be p x s. |
penalty |
Form of penalty. One of "lasso", "ols", "mcp", "elastic.net","selection.lasso", "scad", "mcp.net", "scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp","grp.scad", "grp.mcp.net", "grp.scad.net", "sparse.grp.lasso" |
method |
"selection.variable" or "projection |
transport.method |
Method for calculating the Wasserstein distance. One of "exact", "sinkhorn", "greenkhorn","hilbert" |
epsilon |
Penalty parameter for Sinkhorn and Greenkhorn and optimal transport |
OTmaxit |
Maximum iterations for the optimal transport iterations |
model.size |
The maximum number of desired covariates. Defaults to the number of covariates. |
lambda |
Penalty parameter for lasso regression. See oem. |
nlambda |
Number of lambda values. See oem. |
lambda.min.ratio |
Minimum lambda ratio for self selected lambda. See oem. |
alpha |
elastic net mixing. See oem. |
gamma |
tuning parameters for SCAD and MCP. See oem. |
tau |
mixing parameter for sparse group lasso. See oem. |
groups |
A vector of grouping values. See oem. |
scale.factor |
Value to standardize the covariates by. Typically, is the standard deviation. Should have length 1 or length same as the number of covariates |
penalty.factor |
Penalty factor for OEM. See oem. |
group.weights |
Weights for group lasso. See oem. |
maxit |
Max iteration for OEM. See oem. |
tol |
Tolerance for OEM. See oem. |
irls.maxit |
IRLS max iterations for OEM. See oem. |
irls.tol |
IRLS tolerance for OEM. See oem. |
infimum.maxit |
Maximum number of iterations alternating optimization and Wasserstein distance calculation. Irrelevant for projection method. |
display.progress |
Display intermediate progress? |
Object of class WpProj
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.