WPL1 | R Documentation |
L_1
Penaltyp-Wasserstein Linear Projections With an L_1
Penalty
WPL1(
X,
Y = NULL,
theta = NULL,
power = 2,
penalty = c("lasso", "ols", "mcp", "elastic.net", "selection.lasso", "scad", "mcp.net",
"scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net",
"grp.scad.net", "sparse.grp.lasso"),
model.size = NULL,
lambda = numeric(0),
nlambda = 100L,
lambda.min.ratio = 1e-04,
gamma = 1,
maxit = 500L,
tol = 1e-07,
...
)
X |
matrix of covariates |
Y |
matrix of predictions |
theta |
optional parameter matrix for selection methods. |
power |
power of the Wasserstein distance |
penalty |
Form of penalty. One of "lasso", "ols", "mcp", "elastic.net","selection.lasso", "scad", "mcp.net", "scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp","grp.scad", "grp.mcp.net", "grp.scad.net", "sparse.grp.lasso" |
model.size |
How many coefficients should final model have |
lambda |
penalty parameter |
nlambda |
number of lambdas to explore |
lambda.min.ratio |
minimum ratio of max to min lambda |
gamma |
Tuning parameter for SCAD and MCP methods |
maxit |
maximum iterations for optimization |
tol |
tolerance for convergence |
... |
arguments passed to other methods such as Wasserstein distance |
object of class WpProj
W1L1()
, W2L1()
, WInfL1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.