Nothing
#' Function to calculate pair-wise semantic similarity between input terms based on a direct acyclic graph (DAG) with annotated data
#'
#' \code{xDAGsim} is supposed to calculate pair-wise semantic similarity between input terms based on a direct acyclic graph (DAG) with annotated data. It returns an object of class "igraph", a network representation of input terms. Parallel computing is also supported for Linux or Mac operating systems.
#'
#' @param g an object of class "igraph". It must contain a vertex attribute called 'anno' for storing annotation data (see example for howto)
#' @param terms the terms/nodes between which pair-wise semantic similarity is calculated. If NULL, all terms in the input DAG will be used for calcluation, which is very prohibitively expensive!
#' @param method.term the method used to measure semantic similarity between input terms. It can be "Resnik" for information content (IC) of most informative common ancestor (MICA) (see \url{http://dl.acm.org/citation.cfm?id=1625914}), "Lin" for 2*IC at MICA divided by the sum of IC at pairs of terms, "Schlicker" for weighted version of 'Lin' by the 1-prob(MICA) (see \url{http://www.ncbi.nlm.nih.gov/pubmed/16776819}), "Jiang" for 1 - difference between the sum of IC at pairs of terms and 2*IC at MICA (see \url{https://arxiv.org/pdf/cmp-lg/9709008.pdf}), "Pesquita" for graph information content similarity related to Tanimoto-Jacard index (ie. summed information content of common ancestors divided by summed information content of all ancestors of term1 and term2 (see \url{http://www.ncbi.nlm.nih.gov/pubmed/18460186})). By default, it uses "Schlicker" method
#' @param fast logical to indicate whether a vectorised fast computation is used. By default, it sets to true. It is always advisable to use this vectorised fast computation; since the conventional computation is just used for understanding scripts
#' @param parallel logical to indicate whether parallel computation with multicores is used. By default, it sets to true, but not necessarily does so. It will depend on whether these two packages "foreach" and "doParallel" have been installed
#' @param multicores an integer to specify how many cores will be registered as the multicore parallel backend to the 'foreach' package. If NULL, it will use a half of cores available in a user's computer. This option only works when parallel computation is enabled
#' @param verbose logical to indicate whether the messages will be displayed in the screen. By default, it sets to true for display
#' @return
#' It returns an object of class "igraph", with nodes for input terms and edges for pair-wise semantic similarity between terms.
#' @note none
#' @export
#' @import Matrix
#' @seealso \code{\link{xDAGanno}}, \code{\link{xConverter}}
#' @include xDAGsim.r
#' @examples
#' \dontrun{
#' # 1) SNP-based ontology
#' # 1a) ig.EF (an object of class "igraph" storing as a directed graph)
#' g <- xRDataLoader('ig.EF')
#' g
#'
#' # 1b) load GWAS SNPs annotated by EF (an object of class "dgCMatrix" storing a spare matrix)
#' anno <- xRDataLoader(RData='GWAS2EF')
#'
#' # 1c) prepare for ontology and its annotation information
#' dag <- xDAGanno(g=g, annotation=anno, path.mode="all_paths", true.path.rule=TRUE, verbose=TRUE)
#'
#' # 1d) calculate pair-wise semantic similarity between 5 randomly chosen terms
#' terms <- sample(V(dag)$name, 5)
#' sim <- xDAGsim(g=dag, terms=terms, method.term="Schlicker", parallel=FALSE)
#' sim
#'
#' ###########################################################
#' # 2) Gene-based ontology
#' # 2a) ig.MP (an object of class "igraph" storing as a directed graph)
#' g <- xRDataLoader('ig.MP')
#'
#' # 2b) load human genes annotated by MP (an object of class "GS" containing the 'gs' component)
#' GS <- xRDataLoader(RData='org.Hs.egMP')
#' anno <- GS$gs # notes: This is a list
#'
#' # 2c) prepare for annotation data
#' dag <- xDAGanno(g=g, annotation=anno, path.mode="all_paths", true.path.rule=TRUE, verbose=TRUE)
#'
#' # 2d) calculate pair-wise semantic similarity between 5 randomly chosen terms
#' terms <- sample(V(dag)$name, 5)
#' sim <- xDAGsim(g=dag, terms=terms, method.term="Schlicker", parallel=FALSE)
#' sim
#' }
xDAGsim <- function (g, terms=NULL, method.term=c("Resnik","Lin","Schlicker","Jiang","Pesquita"), fast=T, parallel=TRUE, multicores=NULL, verbose=T)
{
method.term <- match.arg(method.term)
ig <- g
if (class(ig) != "igraph"){
stop("The function must apply to the 'igraph' object.\n")
}
if(is.null(V(ig)$anno) | is.null(V(ig)$IC)){
stop("The function requires that input graph has already contained annotation data. Please first run 'xDAGanno'.\n")
}
IC <- V(ig)$IC
names(IC) <- V(ig)$name
## checking input terms
terms <- terms[!is.na(terms)]
if(is.null(terms) || is.na(terms)){
terms <- V(ig)$name
}else{
flag <- terms %in% V(ig)$name
if(sum(flag)!=0){
terms <- terms[flag]
}else{
terms <- V(ig)$name
}
}
####################################################
## A function to indicate the running progress
progress_indicate <- function(i, B, step, flag=F){
if(i %% ceiling(B/step) == 0 | i==B | i==1){
if(flag & verbose){
message(sprintf("\t%d out of %d (%s)", i, B, as.character(Sys.time())), appendLF=T)
}
}
}
####################################################
num_terms <- length(terms)
if(verbose){
now <- Sys.time()
message(sprintf("Calculate semantic similarity between %d terms using '%s' method (%s)...", num_terms, method.term, as.character(now)), appendLF=T)
}
## pre-compute a sparse matrix of children x ancestors
sCP <- dnet::dDAGancestor(ig, term1=terms, term2=NULL, verbose=T)
allterms <- V(ig)$name
ind <- match(terms, allterms)
###### parallel computing
flag_parallel <- F
if(parallel==TRUE){
flag_parallel <- xCheckParallel(multicores=multicores, verbose=verbose)
if(flag_parallel){
if(method.term=="Resnik"){
i <- 1
sim <- foreach::`%dopar%` (foreach::foreach(i=1:num_terms, .inorder=T, .combine=rbind), {
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
fast <- T
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
res <- IC[mica_js]
x <- rep(0, num_terms)
x[js] <- res
x
}
})
}else if(method.term=="Lin"){
i <- 1
sim <- foreach::`%dopar%` (foreach::foreach(i=1:num_terms, .inorder=T, .combine=rbind), {
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
fast <- T
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
res <- 2*IC[mica_js]/(IC[ind[i]]+IC[ind[js]])
x <- rep(0, num_terms)
x[js] <- res
x
}
})
}else if(method.term=="Schlicker"){
i <- 1
sim <- foreach::`%dopar%` (foreach::foreach(i=1:num_terms, .inorder=T, .combine=rbind), {
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
fast <- T
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
res <- (2*IC[mica_js]/(IC[ind[i]]+IC[ind[js]])) * (1 - 10^(-IC[mica_js]))
x <- rep(0, num_terms)
x[js] <- res
x
}
})
}else if(method.term=="Jiang"){
i <- 1
sim <- foreach::`%dopar%` (foreach::foreach(i=1:num_terms, .inorder=T, .combine=rbind), {
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
fast <- T
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
tmp <- IC[ind[i]]+IC[ind[js]]-2*IC[mica_js]
tmp[tmp>1] <- 1
res <- 1- tmp
x <- rep(0, num_terms)
x[js] <- res
x
}
})
}else if(method.term=="Pesquita"){
i <- 1
sim <- foreach::`%dopar%` (foreach::foreach(i=1:num_terms, .inorder=T, .combine=rbind), {
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
fast <- T
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
## graph information content similarity related to Tanimoto-Jacard index
## summed information content of common ancestors divided by summed information content of all ancestors of term1 and term2
## for all ancestors
allan_js_list <- split(ancestor_js[,2],ancestor_js[,1])
allan_union <- sapply(allan_js_list, function(x){
ux <- base::union(x, ancestor_i)
sum(IC[ux])
})
## for all common ancestors
allca_union <- sapply(ca_js_list, function(x){
sum(IC[x])
})
## their ratio
res <- allca_union / allan_union
x <- rep(0, num_terms)
x[js] <- res
x
}
})
}
sim <- sim + Matrix::t(sim)
sim <- Matrix::Matrix(sim, sparse=T)
}
}
###### non-parallel computing
if(flag_parallel==F){
## calculate pair-wise semantic similarity between input terms
sim <- Matrix::Matrix(0, nrow=num_terms, ncol=num_terms, sparse=T)
if(method.term=="Resnik"){
for(i in 1:num_terms){
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
res <- IC[mica_js]
sim[i,js] <- res
}else{
for(j in i:num_terms){
ancestor_j <- which(sCP[j,]==1)
## find the common ancestor with the maximal information content: most informative information ancestor (MICA)
ancestors <- intersect(ancestor_i, ancestor_j)
mica <- ancestors[which.max(IC[ancestors])]
res <- IC[mica]
sim[i,j] <- res
}
}
}
}else if(method.term=="Lin"){
for(i in 1:num_terms){
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
res <- 2*IC[mica_js]/(IC[ind[i]]+IC[ind[js]])
sim[i,js] <- res
}else{
for(j in i:num_terms){
ancestor_j <- which(sCP[j,]==1)
## find the common ancestor with the maximal information content: most informative information ancestor (MICA)
ancestors <- intersect(ancestor_i, ancestor_j)
mica <- ancestors[which.max(IC[ancestors])]
res <- 2*IC[mica]/(IC[ind[i]]+IC[ind[j]])
sim[i,j] <- res
}
}
}
}else if(method.term=="Schlicker"){
for(i in 1:num_terms){
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
res <- (2*IC[mica_js]/(IC[ind[i]]+IC[ind[js]])) * (1 - 10^(-IC[mica_js]))
sim[i,js] <- res
}else{
for(j in i:num_terms){
ancestor_j <- which(sCP[j,]==1)
## find the common ancestor with the maximal information content: most informative information ancestor (MICA)
ancestors <- intersect(ancestor_i, ancestor_j)
mica <- ancestors[which.max(IC[ancestors])]
res <- (2*IC[mica]/(IC[ind[i]]+IC[ind[j]])) * (1 - 10^(-IC[mica]))
sim[i,j] <- res
}
}
}
}else if(method.term=="Jiang"){
for(i in 1:num_terms){
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
tmp <- IC[ind[i]]+IC[ind[js]]-2*IC[mica_js]
tmp[tmp>1] <- 1
res <- 1- tmp
sim[i,js] <- res
}else{
for(j in i:num_terms){
ancestor_j <- which(sCP[j,]==1)
## find the common ancestor with the maximal information content: most informative information ancestor (MICA)
ancestors <- intersect(ancestor_i, ancestor_j)
mica <- ancestors[which.max(IC[ancestors])]
res <- 1- min(1, IC[ind[i]]+IC[ind[j]]-2*IC[mica])
sim[i,j] <- res
}
}
}
}else if(method.term=="Pesquita"){
for(i in 1:num_terms){
ancestor_i <- which(sCP[i,]==1)
progress_indicate(i, num_terms, 10, flag=T)
if(fast){
mat <- sCP[i:num_terms,]
ancestor_js <- which(matrix(mat==1, nrow=num_terms-i+1), arr.ind=T)
flag <- is.element(ancestor_js[,2], ancestor_i)
ca_js <- ancestor_js[flag,]
ca_js_list <- split(ca_js[,2],ca_js[,1])
mica_js <- sapply(ca_js_list, function(x){
x[which.max(IC[x])]
})
js <- as.numeric(names(ca_js_list))+i-1
## graph information content similarity related to Tanimoto-Jacard index
## summed information content of common ancestors divided by summed information content of all ancestors of term1 and term2
## for all ancestors
allan_js_list <- split(ancestor_js[,2],ancestor_js[,1])
allan_union <- sapply(allan_js_list, function(x){
ux <- base::union(x, ancestor_i)
sum(IC[ux])
})
## for all common ancestors
allca_union <- sapply(ca_js_list, function(x){
sum(IC[x])
})
## their ratio
res <- allca_union / allan_union
sim[i,js] <- res
}else{
for(j in i:num_terms){
ancestor_j <- which(sCP[j,]==1)
## find the common ancestor with the maximal information content: most informative information ancestor (MICA)
ancestors <- intersect(ancestor_i, ancestor_j)
mica <- ancestors[which.max(IC[ancestors])]
## graph information content similarity related to Tanimoto-Jacard index
## summed information content of common ancestors divided by summed information content of all ancestors of term1 and term2
allancestors <- base::union(ancestor_i, ancestor_j)
res <- sum(IC[ancestors]) / sum(IC[allancestors])
sim[i,j] <- res
}
}
}
}
sim <- sim + Matrix::t(sim)
}
if(verbose){
now <- Sys.time()
message(sprintf("Semantic similarity has been calculated (%s)!", as.character(now)), appendLF=T)
}
rownames(sim) <- colnames(sim) <- terms
sim[as.matrix(is.na(sim))] <- 0
#sim <- signif(sim, digits=2)
####################################################################################
if (class(sim) == "dgCMatrix"){
res <- xConverter(sim, from="dgCMatrix", to="igraph", verbose=verbose)
}
invisible(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.