Nothing
#' MCMC sampler for individuals with independent measurements.
#'
#' Build an MCMC sampler that uses calibration data to estimate independent,
#' unknown measurements. This model assumes all Subject/Measurement/Timepoint
#' combinations are independent. So, this sample is well suited for data
#' containing individuals that either have no replicate samples or
#' have replicate samples that are independent over time, such as body condition
#' which can increase or decrease over time, as opposed to length which should
#' be stable or increase over time. It can also be used to estimate lengths
#' when there are replicate measurements. However, since the model assumes all
#' Subject/Measurement/Timepoint combinations are independent, no strength will
#' be borrowed across temporal replication of a subject's measurements,
#' for example.
#'
#' @importFrom stats runif
#'
#' @importFrom nimble nimbleModel
#' @importFrom nimble compileNimble
#' @importFrom nimble configureMCMC
#' @importFrom nimble buildMCMC
#'
#' @example examples/example_independent_length_sampler.R
#'
#' @param data Photogrammetric data formatted for Xcertainty models, required to
#' be an object with class \code{obs.parsed}, which can be obtained by running
#' \code{parse_observations()}
#' @param priors \code{list} with components that define the model's prior
#' distribution. See \code{help("flatten_data")} for more details.
#' @param package_only \code{TRUE} to return the formatted data used to build
#' the sampler, otherwise \code{FALSE} to return the sampler
#'
#' @return outputs a function to run a sampler, the function arguments are:
#' \describe{
#' \item{niter}{set the number of iterations}
#' \item{burn}{set the number samples to discard}
#' \item{thin}{set the thinning rate}
#' }
#'
#' @export
#'
independent_length_sampler = function(data, priors, package_only = FALSE) {
validate_training_objects(data$training_objects)
validate_prediction_objects(data$prediction_objects)
# initialize analysis package
pkg = flatten_data(data = data, priors = priors)
#
# set length priors
#
pkg$constants$n_basic_objects = nrow (data$prediction_objects)
pkg$constants$prior_basic_object = matrix(
data = priors$object_lengths,
nrow = pkg$constants$n_basic_objects,
ncol = 2,
byrow = TRUE
)
pkg$constants$basic_object_ind = data$prediction_objects %>%
left_join(
y = pkg$maps$objects %>% mutate(ind = 1:n()),
by = c('Subject', 'Measurement', 'Timepoint')
) %>%
select(.data$ind) %>%
unlist() %>%
as.numeric()
pkg$inits$object_length[pkg$constants$basic_object_ind] = apply(
X = pkg$constants$prior_basic_object,
MARGIN = 1,
FUN = function(x) runif(n = 1, min = x[1], max = x[2])
)
#
# build model
#
# early return
if(package_only) return(pkg)
mod = nimbleModel(
code = template_model, constants = pkg$constants, data = pkg$data,
inits = pkg$inits
)
cmod = compileNimble(mod)
if(!is.finite(cmod$calculate())) {
stop('Model does not have a finite likelihood')
}
#
# build sampler
#
cfg = configureMCMC(mod)
sampler = buildMCMC(cfg)
csampler = compileNimble(sampler)
function(niter, thin = 1, summary.burn = .5, verbose = TRUE) {
if(verbose) message('Sampling')
csampler$run(
niter = niter, resetMV = TRUE, thin = thin, progressBar = verbose
)
samples = as.matrix(csampler$mvSamples)
post_inds = seq(from = nrow(samples) * summary.burn, to = nrow(samples))
res = list()
if(verbose) message('Extracting altimeter output')
res$altimeters = format_altimeter_output(pkg, samples, post_inds)
if(verbose) message('Extracting image output')
res$images = format_image_output(pkg, samples, post_inds)
if(verbose) message('Extracting pixel error output')
res$pixel_error = format_pixel_output(pkg, samples, post_inds)
if(verbose) message('Extracting object output')
res$objects = format_object_output(
pkg, samples, post_inds, data$prediction_objects
)
if(verbose) message('Extracting summaries')
res$summaries = extract_summaries(res)
res
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.