View source: R/expected.deviance.R
expected.deviance | R Documentation |
Model selection criterion based on posterior predictive distributions and approximations of the expected deviance.
expected.deviance(target, postsumstat, kernel = "gaussian", subset=NULL, print=TRUE)
target |
a vector of the observed summary statistics. |
postsumstat |
a vector, matrix or data frame of summary statistics simulated a posteriori. |
kernel |
a character string specifying the kernel to be used when. Defaults
to |
subset |
a logical expression indicating elements or rows to
keep. Missing values in |
print |
prints out what percent of the distances have been zero. |
This function implements an approximation for the expected deviance
based on simulation performed a posteriori. Thus, after the posterior
distribution of parameters or the posterior model probabilities have
been determined, users need to re-simulate data using the posterior.
The Monte-Carlo estimate of the expected deviance is computed from the
simulated data as follows:
D=-\frac{2}{n}∑_{j=1}^{n}\log(K_ε(\parallel
s^j-s_0\parallel)), where n is number of simulations, K is the
statistical kernel, ε is the error, i.e. difference
between the observed and simulated summary statistics below which
simualtions were accepted in the original call to
postpr
, the s^j's are the summary statistics
obtained from the posterior predictive simualtions, and s_0 are
the observed values of the summary statistics. The expected devaince
averaged over the posterior distribution to compute a deviance
information criterion (DIC).
A list with the following components:
expected.deviance |
The approximate expected deviance. |
dist |
The Euclidean distances for summary statistics simulated a posteriori. |
Francois O, Laval G (2011) Deviance information criteria for model selection in approximate Bayesian computation arXiv:0240377.
## Function definitions skewness <- function(x) { sk <- mean((x-mean(x))^3)/(sd(x)^3) return(sk) } kurtosis <- function(x) { k <- mean((x-mean(x))^4)/(sd(x)^4) - 3 return(k) } ## Observed summary statistics obs.sumstat <- c(2.004821, 3.110915, -0.7831861, 0.1440266) ## Model 1 (Gaussian) ## ################## ## Simulate data theta <- rnorm(10000, 2, 10) zeta <- 1/rexp(10000, 1) param <- cbind(theta, zeta) y <- matrix(rnorm(200000, rep(theta, each = 20), sd = rep(sqrt(zeta), each = 20)), nrow = 20, ncol = 10000) ## Calculate summary statistics s <- cbind(apply(y, 2, mean), apply(y, 2, sd), apply(y, 2, skewness), apply(y, 2, kurtosis)) ## ABC inference gaus <- abc(target=obs.sumstat, param = param, sumstat=s, tol=.1, hcorr = FALSE, method = "loclinear") param.post <- gaus$adj.values ## Posterior predictive simulations postpred.gaus <- matrix(rnorm(20000, rep(param.post[,1], each = 20), sd = rep(sqrt(param.post[,2]), each = 20)), nrow = 20, ncol = 1000) statpost.gaus <- cbind(apply(postpred.gaus, 2, mean),apply(postpred.gaus, 2, sd),apply(postpred.gaus, 2,skewness),apply(postpred.gaus, 2,kurtosis)) # Computation of the expected deviance expected.deviance(obs.sumstat, statpost.gaus)$expected.deviance expected.deviance(obs.sumstat, statpost.gaus, kernel = "epanechnikov")$expected.deviance ## Modele 2 (Laplace) ## ################## ## Simulate data zeta <- rexp(10000) param <- cbind(theta, zeta) y <- matrix(theta + sample(c(-1,1),200000, replace = TRUE)*rexp(200000, rep(zeta, each = 20)), nrow = 20, ncol = 10000) ## Calculate summary statistics s <- cbind( apply(y, 2, mean), apply(y, 2, sd), apply(y, 2, skewness), apply(y, 2, kurtosis)) ## ABC inference lapl <- abc(target=obs.sumstat, param = param, sumstat=s, tol=.1, hcorr = FALSE, method = "loclinear") param.post <- lapl$adj.values ## Posterior predictive simulations postpred.lapl <- matrix(param.post[,1] + sample(c(-1,1),20000, replace = TRUE)*rexp(20000, rep(param.post[,2], each = 20)), nrow = 20, ncol = 1000) statpost.lapl <- cbind(apply(postpred.lapl, 2, mean),apply(postpred.lapl, 2, sd),apply(postpred.lapl, 2,skewness),apply(postpred.lapl, 2,kurtosis)) ## Computation of the expected deviance expected.deviance(obs.sumstat, statpost.lapl)$expected.deviance expected.deviance(obs.sumstat, statpost.lapl, kernel = "epanechnikov")$expected.deviance
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.