Description Usage Arguments Details Author(s) Examples
View source: R/plot_sequential.R
Function for plotting the posterior probabilities of the hypotheses sequentially.
1 | plot_sequential(x, thin = 1, cores = 1, ...)
|
x |
object of class |
thin |
allows the user to skip every kth data point for plotting,
where the number k is specified via |
cores |
number of cores used for the computations. |
... |
further arguments |
The plot shows the posterior probabilities of the hypotheses as a
function of the total number of observations across the experimental and
control group. On top of the plot, probability wheels (see also
prob_wheel
) visualize the prior probabilities of the
hypotheses and the posterior probabilities of the hypotheses after taking
into account all available data.
N.B.: This plot has been designed to look good in the following format: In inches, 530 / 72 (width) by 400 / 72 (height); in pixels, 530 (width) by 400 (height).
Quentin F. Gronau
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | ### 1.
# synthetic sequential data (observations alternate between the groups)
# note that the cumulative number of successes and trials need to be provided
data <- list(y1 = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4),
n1 = c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10),
y2 = c(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9),
n2 = c(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10))
# conduct Bayesian A/B test with default settings
ab <- ab_test(data = data)
print(ab)
# produce sequential plot of posterior probabilities of the hypotheses
# (using recommended width and height values for saving to file)
cairo_pdf(file.path(tempdir(), "test_plot.pdf"),
width = 530 / 72, height = 400 / 72)
plot_sequential(ab)
dev.off()
### 2.
# synthetic sequential data (observations alternate between the groups)
# this time provided in the alternative format
data2 <- data.frame(outcome = c(1, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 1, 1, 1, 1, 1, 0),
group = rep(c(1, 2), 10))
# conduct Bayesian A/B test with default settings
ab2 <- ab_test(data = data2)
print(ab2)
# produce sequential plot of posterior probabilities of the hypotheses
# (using recommended width and height values for saving to file)
cairo_pdf(file.path(tempdir(), "test_plot2.pdf"),
width = 530 / 72, height = 400 / 72)
plot_sequential(ab2)
dev.off()
## Not run:
### 3.
data(seqdata)
# conduct Bayesian A/B test with default settings
ab3 <- ab_test(data = seqdata)
print(ab3)
# produce sequential plot of posterior probabilities of the hypotheses
# (using recommended width and height values for saving to file)
cairo_pdf(file.path(tempdir(), "test_plot3.pdf"),
width = 530 / 72, height = 400 / 72)
plot_sequential(ab3, thin = 4)
dev.off()
## End(Not run)
|
Bayesian A/B Test Results:
Bayes Factors:
BF10: 3.061789
BF+0: 5.92393
BF-0: 0.2614742
Prior Probabilities Hypotheses:
H+: 0.25
H-: 0.25
H0: 0.5
Posterior Probabilities Hypotheses:
H+: 0.7237
H-: 0.0319
H0: 0.2443
png
2
Bayesian A/B Test Results:
Bayes Factors:
BF10: 3.061789
BF+0: 6.016505
BF-0: 0.2579291
Prior Probabilities Hypotheses:
H+: 0.25
H-: 0.25
H0: 0.5
Posterior Probabilities Hypotheses:
H+: 0.7271
H-: 0.0312
H0: 0.2417
png
2
Bayesian A/B Test Results:
Bayes Factors:
BF10: 0.2767214
BF+0: 0.4942612
BF-0: 0.05811472
Prior Probabilities Hypotheses:
H+: 0.25
H-: 0.25
H0: 0.5
Posterior Probabilities Hypotheses:
H+: 0.1936
H-: 0.0228
H0: 0.7836
png
2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.