R/prox_EN.R

#' Accelerated Proximal Gradient on l1 regularized quadratic program
#'
#' Applies accelerated proximal gradient algorithm to the l1-regularized quadratic program
#' \deqn{f(\mathbf{x}) + g(\mathbf{x}) = \frac{1}{2}\mathbf{x}^TA\mathbf{x} - d^T\mathbf{x} + \lambda |\mathbf{x}|_1}{f(x) + g(x) = 0.5*x^T*A*x - d^T*x + lambda*|x|_l1}
#'
#' @param A p by p positive definite coefficient matrix
#' \deqn{A = (\gamma Om + X^T X/n)}{A = (gamma Om + X^T X/n)}.
#' @param d nx1 dimensional column vector.
#' @param lam Regularization parameter for l1 penalty, must be greater than zero.
#' @param alpha Step length.
#' @param maxits Number of iterations to run
#' @param tol Stopping tolerance for proximal gradient algorithm.
#' @return \code{prox_EN} returns an object of \code{\link{class}} "\code{prox_EN}" including a list
#' with the following named components
#'
#' \describe{
#'   \item{\code{call}}{The matched call.}
#'   \item{\code{x}}{Found solution.}
#'   \item{\code{k}}{Number of iterations used.}
#' }
#' @seealso Used by: \code{\link{SDAP}} and the \code{SDAPcv} cross-validation version.
#' @details
#' This function is used by other functions and should only be called explicitly for
#' debugging purposes.
#' @keywords internal
prox_EN <- function(A, d, x0, lam, alpha, maxits, tol){
  #
  # HERE WE NEED A DESCRIPTION
  # Use Roxygen2 to create the desired documentation
  #

  # Make sure these are not a matrix with
  # one element
  lam <- as.numeric(lam)
  alpha <- as.numeric(alpha)

  ###
  # Initialization
  ###
  # Initial solution
  x <- x0

  # Get number of components of x,d, rows/cols of A
  n <- dim(x)[1]

  ###
  # Outer loop: Repeat until converged or max # of iterations reached.
  ###
  for(k in 0:maxits){
    # Compute gradient of differentiable part (f(x) = 0.5*x'*A*x - d'*x)
    df <- A%*%x - d

    ###
    # Compute disagreement between df and lam*sign(x) on supp(x).
    ###
    # Initialize error vector
    err <- matrix(0,nrow = n, ncol = 1)
    # Initialize cardinality of support
    card <- 0

    # For each i, update error if i in the support
    for(i in 1:n){
      if(abs(x[i]) > 1e-12){
        # Update cardinality
        card <- card + 1

        # Update error vector
        err[i] <- -df[i]-lam*sign(x[i])
      }
    }

    ###
    # Check stopping criteria -df(x) in subdiff g(x).
    # Need inf(df) < lam + tol, inf(err) < tol.
    ###
    if(max(norm(df,type="I")-lam, norm(err,type="I")) < tol*n){
      # CONVERGED!
      return(structure(
        list(call = match.call(),
             x = x,
             k = k),
        class = "prox_EN"))
    } else{
      # Update x using soft-thresholding.
      x <- sign(x-alpha*df)*pmax(abs(x-alpha*df) - lam*alpha*matrix(1,n,1),matrix(0,n,1))
    }
  }
  retOb <- structure(
    list(call = match.call(),
         x = x,
         k = k),
    class = "prox_EN")
  return(retOb)
}

Try the accSDA package in your browser

Any scripts or data that you put into this service are public.

accSDA documentation built on May 2, 2019, 5:42 a.m.