Nothing
datadist <- Normal(two_armed = FALSE)
H_0 <- PointMassPrior(.0, 1)
# The power is calculated under the point hypothesis mu=0.4.
H_1 <- PointMassPrior(.4, 1)
ess_H0 <- ExpectedSampleSize(datadist, H_0)
ess_H1 <- ExpectedSampleSize(datadist, H_1)
toer <- Power(datadist, H_0)
power <- Power(datadist, H_1)
# Here, the intial design parameters from which the optimization will start are set.
initial_ad <- get_initial_design(
theta = .4,
alpha = .025,
beta = .2,
type_design = "two-stage",
dist = datadist,
type_n2 = "linear_decreasing",
cf = 0,
ce = 2.1
)
evaluate(toer, initial_ad)
initial_ad@tunable[["c1e"]] <- FALSE
# initial_ad@tunable[["c1f"]] <- FALSE
# Here, the parameters for the adaptive design are optimized.
designad <- minimize(
ess_H1,
subject_to(
power >= 0.8,
toer <= .025
),
initial_ad
)$design
plot(designad)
designad <- cache_design_splines(designad)
evaluate(toer, designad)
adestr:::plot_p(LikelihoodRatioOrderingPValue(), Normal(two_armed = FALSE),
designad, 0, 1, boundary_color = scales::hue_pal()(5)[3], subdivisions = 200L)
adestr:::plot_p(StagewiseCombinationFunctionOrderingPValue(), Normal(two_armed = FALSE),
designad, 0, 1, boundary_color = scales::hue_pal()(5)[3], subdivisions = 200L)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.