View source: R/mcmc_langmuirLM2.R
mcmc_langmuirLM2 | R Documentation |
Performs Bayesian parameter estimation using Markov Chain Monte Carlo (MCMC) to estimate the parameters of the Langmuir isotherm using its second linear form: 1 / Qe = 1 / Qmax + (1 / (Qmax * b)) * (1 / Ce) This method provides a probabilistic interpretation of the model parameters and accounts for their uncertainties. It supports multiple MCMC chains and computes convergence diagnostics (Gelman-Rubin).
Ce |
Numeric vector of equilibrium concentrations. |
Qe |
Numeric vector of adsorbed amounts. |
burnin |
Integer specifying the number of burn-in iterations (default is 1000). |
mcmc |
Integer specifying the total number of MCMC iterations (default is 5000). |
thin |
Integer specifying the thinning interval (default is 10). |
verbose |
Integer controlling the frequency of progress updates (default is 100). |
plot |
Logical; if TRUE, trace and density plots of the MCMC chains are shown (default is FALSE). |
n_chains |
Number of independent MCMC chains (default = 2). |
seed |
Optional integer for reproducibility. |
A list containing:
An object of class mcmc.list
with posterior samples from all chains.
Posterior mean estimate of (Qmax).
Posterior mean estimate of (b).
Posterior mean of slope (1 / (Qmax * b)).
Posterior mean of intercept ((1/Qmax)).
Posterior standard deviation of the slope.
Posterior standard deviation of the intercept.
95% credible interval for the slope.
95% credible interval for the intercept.
Gelman-Rubin convergence diagnostic.
Summary statistics of the first MCMC chain.
Paul Angelo C. Manlapaz
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1995). Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC.
Ce <- c(0.01353, 0.04648, 0.13239, 0.27714, 0.41600, 0.63607, 0.80435, 1.10327, 1.58223)
Qe <- c(0.03409, 0.06025, 0.10622, 0.12842, 0.15299, 0.15379, 0.15735, 0.15735, 0.16607)
mcmc_langmuirLM2(Ce, Qe, burnin = 1000, mcmc = 5000, thin = 10,
verbose = 100, plot = TRUE, n_chains = 2, seed = 123)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.