View source: R/mcmc_temkinLM.R
mcmc_temkinLM | R Documentation |
Performs Bayesian parameter estimation using Markov Chain Monte Carlo (MCMC) to estimate the parameters of the Temkin isotherm based on its linearized form: Qe = aT + bT * log(Ce) This method provides a probabilistic interpretation of the model parameters and accounts for their uncertainties. It supports multiple MCMC chains and computes convergence diagnostics (Gelman-Rubin).
Ce |
Numeric vector of equilibrium concentrations. |
Qe |
Numeric vector of adsorbed amounts. |
Temp |
Numeric value of temperature in Kelvin. |
burnin |
Integer specifying the number of burn-in iterations (default is 1000). |
mcmc |
Integer specifying the total number of MCMC iterations (default is 5000). |
thin |
Integer specifying the thinning interval (default is 10). |
verbose |
Integer controlling the frequency of progress updates (default is 100). |
plot |
Logical; if TRUE, trace and density plots of the MCMC chains are shown (default is FALSE). |
n_chains |
Number of independent MCMC chains (default = 2). |
seed |
Optional integer for reproducibility. |
A list containing:
An object of class mcmc.list
containing posterior samples from all MCMC chains.
Posterior mean estimate of Temkin constant (aT).
Posterior mean estimate of Temkin constant (bT).
Posterior mean of the intercept (aT) from the linear model.
Posterior mean of the slope (b_T) from the linear model.
Posterior standard deviation of (aT).
Posterior standard deviation of (bT).
95% credible interval for (aT).
95% credible interval for (bT ).
Gelman-Rubin convergence diagnostic.
Summary statistics from the first chain.
Paul Angelo C. Manlapaz
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1995). Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC.
Ce <- c(0.01353, 0.04648, 0.13239, 0.27714, 0.41600, 0.63607, 0.80435, 1.10327, 1.58223)
Qe <- c(0.03409, 0.06025, 0.10622, 0.12842, 0.15299, 0.15379, 0.15735, 0.15735, 0.16607)
mcmc_temkinLM(Ce, Qe, 298, burnin = 1000, mcmc = 5000, thin = 10,
verbose = 100, plot = TRUE, n_chains = 2, seed = 123)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.