Nothing
#' @title MCMC Analysis for Temkin Isotherm Linear Model
#' @name mcmc_temkinLM
#' @description
#' Performs Bayesian parameter estimation using Markov Chain Monte Carlo (MCMC) to estimate the parameters of the Temkin isotherm based on its linearized form:
#' Qe = aT + bT * log(Ce)
#' This method provides a probabilistic interpretation of the model parameters and accounts for their uncertainties.
#' It supports multiple MCMC chains and computes convergence diagnostics (Gelman-Rubin).
#' @param Ce Numeric vector of equilibrium concentrations.
#' @param Qe Numeric vector of adsorbed amounts.
#' @param Temp Numeric value of temperature in Kelvin.
#' @param burnin Integer specifying the number of burn-in iterations (default is 1000).
#' @param mcmc Integer specifying the total number of MCMC iterations (default is 5000).
#' @param thin Integer specifying the thinning interval (default is 10).
#' @param verbose Integer controlling the frequency of progress updates (default is 100).
#' @param plot Logical; if TRUE, trace and density plots of the MCMC chains are shown (default is FALSE).
#' @param n_chains Number of independent MCMC chains (default = 2).
#' @param seed Optional integer for reproducibility.
#' @import MCMCpack
#' @import stats
#' @import coda
#' @import graphics
#' @return A list containing:
#' \describe{
#' \item{mcmc_results}{An object of class \code{mcmc.list} containing posterior samples from all MCMC chains.}
#' \item{aT_mean}{Posterior mean estimate of Temkin constant (aT).}
#' \item{bT_mean}{Posterior mean estimate of Temkin constant (bT).}
#' \item{aT_raw_mean}{Posterior mean of the intercept (aT) from the linear model.}
#' \item{bT_raw_mean}{Posterior mean of the slope (b_T) from the linear model.}
#' \item{aT_sd}{Posterior standard deviation of (aT).}
#' \item{bT_sd}{Posterior standard deviation of (bT).}
#' \item{aT_ci}{95\% credible interval for (aT).}
#' \item{bT_ci}{95\% credible interval for (bT ).}
#' \item{gelman_diag}{Gelman-Rubin convergence diagnostic.}
#' \item{mcmc_summary}{Summary statistics from the first chain.}
#' }
#' @examples Ce <- c(0.01353, 0.04648, 0.13239, 0.27714, 0.41600, 0.63607, 0.80435, 1.10327, 1.58223)
#' @examples Qe <- c(0.03409, 0.06025, 0.10622, 0.12842, 0.15299, 0.15379, 0.15735, 0.15735, 0.16607)
#' @examples
#' mcmc_temkinLM(Ce, Qe, 298, burnin = 1000, mcmc = 5000, thin = 10,
#' verbose = 100, plot = TRUE, n_chains = 2, seed = 123)
#' @author Paul Angelo C. Manlapaz
#' @references Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1995). \emph{Markov Chain Monte Carlo in Practice}. Chapman and Hall/CRC.
#' @importFrom MCMCpack MCMCregress
#' @importFrom coda mcmc.list traceplot densplot gelman.diag
#' @importFrom stats quantile
#' @importFrom graphics par abline legend
#' @export
utils::globalVariables(c("log_Ce"))
mcmc_temkinLM <- function(Ce, Qe, Temp,
burnin = 1000,
mcmc = 5000,
thin = 10,
verbose = 100,
plot = FALSE,
n_chains = 2,
seed = NULL) {
if (!requireNamespace("MCMCpack", quietly = TRUE)) stop("Package 'MCMCpack' is required.")
if (!requireNamespace("coda", quietly = TRUE)) stop("Package 'coda' is required.")
if (any(Ce <= 0)) stop("All Ce values must be positive (required for log-transformation).")
R <- 8.314 # J/mol·K
log_Ce <- log(Ce)
data <- data.frame(Qe = Qe, log_Ce = log_Ce)
run_chain <- function(i) {
if (!is.null(seed)) set.seed(seed + i)
MCMCpack::MCMCregress(Qe ~ log_Ce,
data = data,
burnin = burnin,
mcmc = mcmc,
thin = thin,
verbose = verbose,
progressbar = TRUE)
}
chains <- lapply(seq_len(n_chains), run_chain)
mcmc_list <- coda::mcmc.list(chains)
main_chain <- as.data.frame(chains[[1]])
intercept_mean <- mean(main_chain[, 1]) # aT raw
slope_mean <- mean(main_chain[, 2]) # bT
intercept_sd <- sd(main_chain[, 1])
slope_sd <- sd(main_chain[, 2])
intercept_ci <- quantile(main_chain[, 1], probs = c(0.025, 0.975))
slope_ci <- quantile(main_chain[, 2], probs = c(0.025, 0.975))
bT_mean <- slope_mean
aT_mean <- exp(intercept_mean * (bT_mean / (R * Temp))) # aT = exp(a_raw * bT / RT)
gelman_diag <- tryCatch({
coda::gelman.diag(mcmc_list, autoburnin = FALSE)
}, error = function(e) {
warning("Gelman-Rubin diagnostic failed: ", e$message)
NULL
})
if (plot) {
oldpar <- graphics::par(no.readonly = TRUE)
on.exit(graphics::par(oldpar), add = TRUE)
param_names <- colnames(mcmc_list[[1]])
for (param in param_names) {
values <- unlist(lapply(mcmc_list, function(chain) chain[, param]))
post_mean <- mean(values)
post_sd <- sd(values)
graphics::par(mfrow = c(1, 1), mar = c(4, 4, 2, 1))
coda::traceplot(mcmc_list[, param], main = paste("Traceplot:", param))
graphics::abline(h = post_mean, col = "#FF6347", lty = 2, lwd = 2)
graphics::legend("topleft",
legend = sprintf("Posterior Mean = %.4f\nPosterior SD = %.4f", post_mean, post_sd),
col = "#FF6347", lty = 2, lwd = 2, bty = "n", cex = 0.8)
coda::densplot(mcmc_list[, param], main = paste("Density:", param))
graphics::abline(v = post_mean, col = "#FF6347", lty = 2, lwd = 2)
graphics::legend("topright",
legend = sprintf("Posterior Mean = %.4f\nPosterior SD = %.4f", post_mean, post_sd),
col = "#FF6347", lty = 2, lwd = 2, bty = "n", cex = 0.8)
}
}
return(list(
mcmc_results = mcmc_list,
aT_mean = aT_mean,
bT_mean = bT_mean,
aT_raw_mean = intercept_mean,
bT_raw_mean = slope_mean,
aT_sd = intercept_sd,
bT_sd = slope_sd,
aT_ci = intercept_ci,
bT_ci = slope_ci,
gelman_diag = gelman_diag,
mcmc_summary = summary(coda::mcmc(main_chain))
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.