Kosmulski's MAXPROD-index

Share:

Description

Given a sequence of n non-negative numbers x=(x_1,…,x_n), where x_i ≥ x_j ≥ 0 for i ≤ j, the MAXPROD-index (Kosmulski, 2007) for x is defined as

MAXPROD(x)=max{i x_i: i=1,…,n}

Usage

1

Arguments

x

a non-negative numeric vector

Details

If non-increasingly sorted vector is given, the function is O(n).

MAXPROD index is the same as the discrete Shilkret integral of x w.r.t. the counting measure.

See index_lp for a natural generalization.

Value

a single numeric value

References

Kosmulski M., MAXPROD - A new index for assessment of the scientific output of an individual, and a comparison with the h-index, Cybermetrics 11(1), 2007.

See Also

Other impact_functions: index.g, index_g, index_g_zi; index.h, index_h; index.lp, index_lp; index.rp, index_rp; index_w