Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 8,
fig.height = 5.75,
out.width = "95%"
)
options(digits = 3)
## ----startup, eval = FALSE----------------------------------------------------
# library(tidymodels)
# library(agua)
# library(ggplot2)
# tidymodels_prefer()
# theme_set(theme_bw())
#
# # start h2o server
# h2o_start()
#
# data(concrete, package = "modeldata")
# concrete <-
# concrete %>%
# group_by(across(-compressive_strength)) %>%
# summarize(compressive_strength = mean(compressive_strength),
# .groups = "drop")
#
# concrete
# #> # A tibble: 992 × 9
# #> cement blast_furn…¹ fly_ash water super…² coars…³ fine_…⁴ age compr…⁵
# #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
# #> 1 102 153 0 192 0 887 942 3 4.57
# #> 2 102 153 0 192 0 887 942 7 7.68
# #> 3 102 153 0 192 0 887 942 28 17.3
# #> 4 102 153 0 192 0 887 942 90 25.5
# #> 5 108. 162. 0 204. 0 938. 849 3 2.33
# #> 6 108. 162. 0 204. 0 938. 849 7 7.72
# #> 7 108. 162. 0 204. 0 938. 849 28 20.6
# #> 8 108. 162. 0 204. 0 938. 849 90 29.2
# #> 9 116 173 0 192 0 910. 892. 3 6.28
# #> 10 116 173 0 192 0 910. 892. 7 10.1
# #> # … with 982 more rows, and abbreviated variable names
# #> # ¹blast_furnace_slag, ²superplasticizer, ³coarse_aggregate,
# #> # ⁴fine_aggregate, ⁵compressive_strength
## ----rf-fit, eval = FALSE-----------------------------------------------------
# set.seed(1501)
# concrete_split <- initial_split(concrete, strata = compressive_strength)
# concrete_train <- training(concrete_split)
# concrete_test <- testing(concrete_split)
#
# rf_spec <- rand_forest(mtry = 3, trees = 500) %>%
# set_engine("h2o", histogram_type = "Random") %>%
# set_mode("regression")
#
# normalized_rec <-
# recipe(compressive_strength ~ ., data = concrete_train) %>%
# step_normalize(all_predictors())
#
# rf_wflow <- workflow() %>%
# add_model(rf_spec) %>%
# add_recipe(normalized_rec)
#
# rf_fit <- fit(rf_wflow, data = concrete_train)
# rf_fit
# #> ══ Workflow [trained] ════════════════════════════════════════════════════
# #> Preprocessor: Recipe
# #> Model: rand_forest()
# #>
# #> ── Preprocessor ──────────────────────────────────────────────────────────
# #> 1 Recipe Step
# #>
# #> • step_normalize()
# #>
# #> ── Model ─────────────────────────────────────────────────────────────────
# #> Model Details:
# #> ==============
# #>
# #> H2ORegressionModel: drf
# #> Model ID: DRF_model_R_1665503649643_6
# #> Model Summary:
# #> number_of_trees number_of_internal_trees model_size_in_bytes min_depth
# #> 1 500 500 2652880 15
# #> max_depth mean_depth min_leaves max_leaves mean_leaves
# #> 1 20 17.97600 375 450 417.48000
# #>
# #>
# #> H2ORegressionMetrics: drf
# #> ** Reported on training data. **
# #> ** Metrics reported on Out-Of-Bag training samples **
# #>
# #> MSE: 26.5
# #> RMSE: 5.15
# #> MAE: 3.7
# #> RMSLE: 0.169
# #> Mean Residual Deviance : 26.5
## ----rf-predict, eval = FALSE-------------------------------------------------
# predict(rf_fit, new_data = concrete_test)
# #> # A tibble: 249 × 1
# #> .pred
# #> <dbl>
# #> 1 6.42
# #> 2 9.54
# #> 3 9.20
# #> 4 25.5
# #> 5 6.60
# #> 6 28.6
# #> 7 10.0
# #> 8 31.9
# #> 9 12.1
# #> 10 11.4
# #> # … with 239 more rows
## ----rf-fitresample, eval = FALSE---------------------------------------------
# concrete_folds <-
# vfold_cv(concrete_train, strata = compressive_strength)
#
# fit_resamples(rf_wflow, resamples = concrete_folds)
# #> # Resampling results
# #> # 10-fold cross-validation using stratification
# #> # A tibble: 10 × 4
# #> splits id .metrics .notes
# #> <list> <chr> <list> <list>
# #> 1 <split [667/76]> Fold01 <tibble [2 × 4]> <tibble [0 × 3]>
# #> 2 <split [667/76]> Fold02 <tibble [2 × 4]> <tibble [0 × 3]>
# #> 3 <split [667/76]> Fold03 <tibble [2 × 4]> <tibble [0 × 3]>
# #> 4 <split [667/76]> Fold04 <tibble [2 × 4]> <tibble [0 × 3]>
# #> 5 <split [667/76]> Fold05 <tibble [2 × 4]> <tibble [0 × 3]>
# #> 6 <split [668/75]> Fold06 <tibble [2 × 4]> <tibble [0 × 3]>
# #> 7 <split [671/72]> Fold07 <tibble [2 × 4]> <tibble [0 × 3]>
# #> 8 <split [671/72]> Fold08 <tibble [2 × 4]> <tibble [0 × 3]>
# #> 9 <split [671/72]> Fold09 <tibble [2 × 4]> <tibble [0 × 3]>
# #> 10 <split [671/72]> Fold10 <tibble [2 × 4]> <tibble [0 × 3]>
## ---- eval = FALSE------------------------------------------------------------
# library(vip)
#
# rf_fit %>%
# extract_fit_parsnip() %>%
# vip()
## ---- echo = FALSE------------------------------------------------------------
knitr::include_graphics("../man/figures/vip.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.