knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(aion)
aion offers a simple API that can be extended and used by other specialized packages.
The following packages rely on aion:
The following example is used to build a simple solar calendar with 365 days each year and no leap-year rule. This is the ancient Egyptian calendar. You will find full details of the calculations and detailed explanations in Reingold and Dershowitz (2018, p. 29).
You can define additional calendars by creating S4 classes that inherit from the TimeScale
class exported by aion:
## Egyptian calendar E <- setClass( Class = "EgyptianCalendar", prototype = list( name = "Egyptian", fixed = -272787, direction = 1L, year = 365 ), contains = "TimeScale" )
Once the calendar has been defined, you need to build methods for converting rata die to and from this calendar:
## Convert Egyptian dates to rata die ## NB: this method MUST return a RataDie object setMethod( f = "fixed", signature = c( year = "numeric", month = "numeric", day = "numeric", calendar = "EgyptianCalendar" ), definition = function(year, month, day, calendar) { rd <- calendar_fixed(calendar) + 365 * (year - 1) + 30 * (month - 1) + day - 1 as_fixed(rd) } ) ## Convert rata die to Egyptian dates ## NB: this method MUST return a data.frame setMethod( f = "as_date", signature = c(object = "numeric", calendar = "EgyptianCalendar"), definition = function(object, calendar) { day <- object - calendar_fixed(calendar) year <- day %/% 365 + 1 month <- (day %% 365) %/% 30 + 1 day <- day - 365 * (year - 1) - 30 * (month - 1) + 1 data.frame(year = year, month = month, day = day) } ) ## Convert rata die to Egyptian years setMethod( f = "as_year", signature = c(object = "numeric", calendar = "EgyptianCalendar"), definition = function(object, calendar, ...) { (object - calendar_fixed(calendar)) %/% 365 + 1 } )
Now you can use your calendar:
## Create a calendar object cal <- E() ## Convert 161/7/15 in rata die fixed( year = 161, month = 7, day = 15, calendar = cal ) ## Convert -214193 r.d. to an Egyptian date as_date(-214193, calendar = cal)
The definition of new calendars, combined with the Julian and Gregorian calendars already included in aion, allows you to build conversion tools:
## Build a conversion function from Gregorian CE years to Egyptian years Gregorian_to_Egyptian <- convert(CE(), E()) ## Convert 2023 (Gregorian) to the Egyptian calendar Gregorian_to_Egyptian(2023)
A time series object is simply an $n \times m \times p$ array
, with $n$ being the number of observations, $m$ being the number of series and with the $p$ columns of the third dimension containing extra variables for each series. This array
comes with an extra time
slot that store the observations times expressed in rata die. You can create classes that inherits from the TimeSeries
class.
As an example, you can create a class that represent the results of the calibration of radiocarbon dates (this code comes from the ananke package):
.CalibratedAges <- setClass( Class = "CalibratedAges", slots = c( ages = "numeric", # Stores the radiocarbon ages to be calibrated errors = "numeric", # Store the standard deviation of the radiocarbon ages curves = "character" # Store the name of the calibration curve ), contains = "TimeSeries" )
All methods defined in aion can then be used on objects belonging to this new class (e.g. plot()
).
Reingold, Edward M., and Nachum Dershowitz. 2018. Calendrical Calculations: The Ultimate Edition. 4th ed. Cambridge University Press. https://doi.org/10.1017/9781107415058.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.