Description Usage Arguments Value Methods (by class)
View source: R/kappa4nlsBoot.R
Bootstrap estimates, along with standard errors and confidence intervals, of a nonlinear model, resulting from nonlinear least squares fitting of the four-parameter kappa sigmoidal function.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  | kappa4nlsBoot(formula, data = list(), xin, lower, upper, tol, maxiter,
  bootstraps, bootName, ...)
## Default S3 method:
kappa4nlsBoot(formula, data = list(), xin, lower = c(0,
  -5, -5), upper = c(10, 1, 1), tol = 1e-15, maxiter = 50000, bootstraps,
  bootName, ...)
## S3 method for class 'kappa4nlsBoot'
print(x, ...)
## S3 method for class 'kappa4nlsBoot'
summary(object, ...)
## S3 method for class 'summary.kappa4nlsBoot'
print(x, ...)
## S3 method for class 'formula'
kappa4nlsBoot(formula, data = list(), xin, lower, upper,
  tol, maxiter, bootstraps, bootName, ...)
## S3 method for class 'kappa4nlsBoot'
predict(object, newdata = NULL, ...)
 | 
formula | 
 An LHS ~ RHS formula, specifying the linear model to be estimated.  | 
data | 
 A data.frame which contains the variables in   | 
xin | 
 Numeric vector of length 3 containing initial values, for σ, h, and k.  | 
lower | 
 A vector of lower constraints for the parameters to be estimated; defaults to c(0, -5, -5).  | 
upper | 
 A vector of upper constraints for the parameters to be estimated; defaults to c(10, 1, 1).  | 
tol | 
 Error tolerance level; defaults to 1e-15.  | 
maxiter | 
 The maximum number of iterations allowed; defaults to 50000.  | 
bootstraps | 
 An integer giving the number of bootstrap samples.  | 
bootName | 
 The name of the .rds file to store the kappa4nlsBoot object. May include a path.  | 
... | 
 Arguments to be passed on to the differential evolution function   | 
x | 
 A kappa4nlsBoot object.  | 
object | 
 A kappa4nlsBoot object.  | 
newdata | 
 The data on which the estimated model is to be fitted.  | 
A generic S3 object with class kappa4nlsBoot.
kappa4nlsBoot.default: A list object (saved using saveRDS in the specified location) with the following components:
intercept: Did the model contain an intercept TRUE/FALSE?
coefficients: A vector of estimated coefficients.
bcoefficients: A vector of bootstrap coefficients, resulting from bootstrap estimation.
se: The standard errors for the estimates resulting from bootstrap estimation.
error: The value of the objective function.
errorList: A vector of values of the objective function for each bootstrap sample.
fitted.values: A vector of estimated values.
residuals: The residuals resulting from the fitted model.
call: The call to the function.
 time: Min, mean and max time incurred by the computation, as obtained from comm.timer.
summary.kappa4nlsBoot: A list of class summary.kappa4nlsBoot with the following components:
 call: Original call to the kappa4nlsBoot function.
coefficients: A matrix with estimates, estimated errors, and 95% parameter confidence intervals (based on the inverse empirical distribution function).
r.squared: The r^{2} coefficient.
sigma: The residual standard error.
error: Value of the objective function.
 time: Min, mean and max time incurred by the computation, as obtained from comm.timer.
residSum: Summary statistics for the distribution of the residuals.
errorSum: Summary statistics for the distribution of the value of the objective function.
print.summary.kappa4nlsBoot: The object passed to the function is returned invisibly.
predict.kappa4nlsBoot: A vector of predicted values resulting from the estimated model.
default: default method for kappa4nlsBoot.
kappa4nlsBoot: print method for kappa4nlsBoot.
kappa4nlsBoot: summary method for kappa4nlsBoot.
summary.kappa4nlsBoot: print method for summary.kappa4nlsBoot.
formula: formula method for kappa4nlsBoot.
kappa4nlsBoot: predict method for kappa4nlsBoot.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.