Nothing
# ALEPlots_methods.R
# S7 methods ----------------
#' @name get.ALEPlots
#' @title get method for ALEPlots objects
#'
#' @description
#' Retrieve specific plots from a `ALEPlots` object. Unlike [subset.ALEPlots()] which returns an `ALEPlots` object with the subsetted `x_cols` variables and interactions, this `get.ALEPlots()` method returns a list of `ggplot2::ggplot` objects as specified in the return value description. To retain special `ALEPlots` behaviour like plotting, printing, and summarizing multiple plots, use [subset.ALEPlots()] instead.
#'
#' See [get.ALE()] for explanation of parameters not described here.
#'
#' @param obj ALEPlots object from which to retrieve ALE elements.
#' @param type character(1). What type of ALEPlots to retrieve: `'ale'` for standard ALE plots or `'effect'` for ALE effects plots. See `cats` argument for options for categorical plots.
#' @param cats character. The categories (one or more) of a categorical outcome variable to retrieve. To retrieve all categories as individual category plots, leave `cats` at the default `NULL`. For categorical plots that combine all categories, specify `cats = ".all"`. (Don't forget the "." in ".all", which avoids naming conflicts with legitimate categories that might be named "all".) For such all-category plots, `type` must be set to "overlay" or "facet" for the specific desired type of categorical plot.
#'
#' @returns A list of `ggplot` objects as described in the documentation for the return value of [get.ALE()]. This is different from [subset.ALEPlots()], which returns an `ALEPlots` object with the subsetted `x_cols` variables and interactions.
#'
#' @method get ALEPlots
method(get, ALEPlots) <- function(
obj,
x_cols = NULL,
...,
exclude_cols = NULL,
type = 'ale',
cats = NULL,
simplify = TRUE,
silent = FALSE
) {
## Validate inputs -------------
# Error if any unlisted argument is used (captured in ...).
# Never skip this validation step!
rlang::check_dots_empty()
# Subset x_cols.
# This procedure also validates the arguments used here.
obj <- subset(
x = obj,
x_cols = x_cols,
exclude_cols = exclude_cols,
# never exclude effects plots at this point, in case they are requested
include_eff = TRUE,
silent = silent
)
x_cols <- obj@params$requested_x_cols
vap <- validate_ALEPlots_method_args(obj, type, cats)
type <- vap$type
y_cats <- vap$y_cats
all_cats <- vap$all_cats
## Retrieve requested plots --------------
if (!all_cats) {
if (is.null(cats)) {
cats <- y_cats
}
req_plots <- prop(obj, 'plots')[cats]
req_plots <- map(req_plots, \(it.cat_plots) {
if (type == 'ale') {
list(
d1 = it.cat_plots$d1,
d2 = it.cat_plots$d2
)
}
else if (type == 'effect') {
it.cat_plots$eff
}
})
# If there is only one category, results are always simplified regardless of the value of simplify
if (length(req_plots) == 1) {
# Only one category: eliminate the category level
req_plots <- req_plots[[1]]
}
}
else {
# all_cats
req_plots <- list(
d1 = obj@plots$.all_cats$d1 |>
map(\(it.d1_plots) it.d1_plots[[type]]),
d2 = if (type == 'facet') {
obj@plots$.all_cats$d2
} else if (type == 'overlay') {
if (length(x_cols$d1) == 0) {
cli_warn(c(
'!' = 'Overlay plots were requested, yet overlay plots are not supported for 2D ALE and no 1D ALE plots were requested.'
))
NULL
}
}
)
}
## Simplify the results ----------------
if (
simplify &&
# Only simplify if req_plots is a simple list
(class(req_plots) |> is_string('list'))
) {
# If one dimension is empty, eliminate it and leave only the other
req_plots <- compact(req_plots)
if (all(names(req_plots) %in% c('d1', 'd2'))) {
if (is.null(req_plots[['d1']])) {
req_plots <- compact(req_plots[['d2']])
} else if (is.null(req_plots[['d2']])) {
req_plots <- compact(req_plots[['d1']])
}
}
if (length(req_plots) == 1) {
req_plots <- req_plots[[1]]
}
}
return(req_plots)
}
#' @name plot.ALEPlots
#' @title Plot method for ALEPlots object
#'
#' @description
#' Plot an `ALEPlots` object.
#'
#' @param x An object of class `ALEPlots`.
#' @param max_print integer(1). The maximum number of plots that may be printed at a time. 1D plots and 2D are printed on separate pages, so this maximum applies separately to each dimension of ALE plots, not to all dimensions combined.
#' @param ... Arguments to pass to [patchwork::wrap_plots()]
#'
#' @return Invisibly returns `x`.
#'
#' @method plot ALEPlots
method(plot, ALEPlots) <- function(
x,
max_print = 20L,
...
) {
plots_obj <- x # rename internally
rm(x)
n_1D <- length(plots_obj@params$requested_x_cols$d1)
n_2D <- length(plots_obj@params$requested_x_cols$d2)
# Print one page per category per dimension.
# Skip .all_cats; silently just don't print it.
plots_obj@plots[names(plots_obj@plots) |> setdiff('.all_cats')] |>
purrr::iwalk(\(it.cat_plots, i.cat_name) {
purrr::iwalk(c(n_1D, n_2D), \(it.n, i.d) {
if ((0 < it.n) && (it.n <= max_print)) {
it.cat_plots[['d' %+% i.d]] |>
patchwork::wrap_plots(...) |>
print()
}
else if (
it.n > max_print &&
# issue the warning only for the 1st category; don't repeat it
i.cat_name == plots_obj@params$y_cats[1]
) {
cli_warn(c(
'!' = 'With more than {max_print} {i.d}D plots, either filter the specific plots to print using {.fn get} or call {.fn print} with a higher value of the {.arg max_print} argument.',
'i' = 'The {.cls ALEPlots} object contains {it.n} {i.d}D plots.'
))
}
})
})
invisible(plots_obj)
} # plot.ALEPlots()
#' @name print.ALEPlots
#' @title Print method for ALEPlots object
#'
#' @description
#' Print an ALEPlots object by calling plot().
#'
#' @param x An object of class `ALEPlots`.
#' @param max_print See documentation for [plot.ALEPlots()]
#' @param ... Additional arguments (currently not used).
#'
#' @return Invisibly returns `x`.
#'
#' @method print ALEPlots
method(print, ALEPlots) <- function(x, max_print = 20L, ...) {
getS3method("plot", "ale::ALEPlots")(x, max_print = max_print, ...)
}
#' @name subset.ALEPlots
#' @title subset method for ALEPlots object
#'
#' @description
#' Subset an `ALEPlots` object to produce another `ALEPlots` object only with the subsetted `x_cols` variables and interactions, as specified in the return value description.
#'
#' See [get.ALE()] for explanation of parameters not described here.
#'
#' @param x An object of class `ALEPlots`.
#' @param ... not used. Inserted to require explicit naming of subsequent arguments.
#' @param include_eff logical(1). `x_cols` and `exclude_cols` specify precisely which variables to include or exclude in the subset. However, multivariable plots like ALE effects plot are ambiguous because they cannot be subsetted to remove some existing variables. `include_eff = TRUE` (default) includes the ALE effects plot in the subset rather than dropping it, if it is available.
#'
#' @returns An `ALEPlots` object reduced to cover only variables and interactions specified by `x_cols` and `exclude_cols`. This is different from [get.ALEPlots()], which returns a list of `ggplot` objects and loses the special `ALEPlots` behaviour like plotting, printing, and summarizing multiple plots.
#'
#' @method subset ALEPlots
method(subset, ALEPlots) <- function(
x,
x_cols = NULL,
...,
exclude_cols = NULL,
include_eff = TRUE,
silent = FALSE
) {
# Error if any unlisted argument is used (captured in ...).
# Never skip this validation step!
rlang::check_dots_empty()
validate(is_bool(include_eff))
if (is.null(x_cols) && is.null(exclude_cols)) {
# NULL x_cols means "everything", so return the original object with no subset
return(x)
}
plots_obj <- x # rename
rm(x)
col_names <- plots_obj@params$requested_x_cols |>
unlist() |>
str_split(':') |>
unlist()
x_cols <- resolve_x_cols(
x_cols = x_cols,
col_names = col_names,
y_col = plots_obj@params$y_col,
exclude_cols = exclude_cols,
silent = silent
)
# Subset plots
plots_obj@plots <- plots_obj@plots |>
map(\(it.plot_cat) {
it.plot_cat$d1 <- it.plot_cat$d1[x_cols$d1]
it.plot_cat$d2 <- it.plot_cat$d2[x_cols$d2]
if (!include_eff) {
# Only removed if explicitly not included
it.plot_cat$eff <- NULL
}
it.plot_cat
})
# Align params to the new subset
plots_obj@params$requested_x_cols <- x_cols
return(plots_obj)
}
#' @name summary.ALEPlots
#' @title summary method for ALEPlots object
#'
#' @description
#' Present concise summary information about an `ALEPlots` object.
#'
#' @param object An object of class `ALEPlots`.
#' @param ... Not used
#'
#' @return Summary string.
#'
#' @method summary ALEPlots
method(summary, ALEPlots) <- function(
object,
...
) {
n_cats <- length(object@params$y_cats)
cats_text <- if (n_cats > 1) {
str_glue('{n_cats} categories, each with')
} else {
''
}
summ <- str_glue(
'"ALEPlots" object with {cats_text}',
'{length(object@params$requested_x_cols$d1)} 1D and ',
'{length(object@params$requested_x_cols$d2)} 2D ALE plots.'
)
return(summ)
} # summary.ALEPlots()
# Functions specific to ALEPlots objects -------------
validate_ALEPlots_method_args <- function(
aleplots_obj,
type,
cats
)
{
valid_type <- c('ale', 'effect', 'overlay', 'facet')
validate(
is_string(type, valid_type),
msg = 'The {.arg type} argument must be one (and only one) of the following values: {valid_type}.'
)
y_cats <- aleplots_obj@params$y_cats
all_cats <- is_string(cats, c('.all', '.all_cats')) # all-category plots requested
validate(
is.null(cats) || all(cats %in% y_cats) || all_cats,
msg = c(
'x' = 'The {.arg cats} argument must be {.val NULL}, {".all"}, or one or more of the following categories of the outcome variable: {y_cats}.',
'i' = '{.arg cats} is {cats}.'
)
)
if (all_cats) {
validate(
type %in% c('ale', 'overlay', 'facet'),
msg = c(
'x' = "For categorical plots that span all categories together, the {.arg type} argument must be one of {c('overlay', 'facet')}.",
'i' = 'The {.arg type} argument was {type}.'
)
)
# If unchanged for all_cats, set default type ('ale') to 'facet'
type <- if (type == 'ale') 'facet' else type
}
return(list(
type = type,
y_cats = y_cats,
all_cats = all_cats
))
}
#' @title Customize plots contained in an ALEPlots object
#'
#' @export
#'
#' @description
#' Customize an `ALEPlots` object by modifying plots indicated by the combination of `x_cols`, `type`, and `cats` as specified. Some arguments indicate some common customizations such as zooming in or out; see the argument documentation for available simple options.
#'
#' The most flexible option is to specify a list of `ggplot` layers with the `layers` argument; this appends the provided layers to each plot by applying the [ggplot2::+.gg()] method to them. Thus, any customization supported by appending `ggplot` layers can be applied. If both `layers` and simple options like `zoom_y` are specified, then the `layers` layers are applied first and then any other option is applied in the order presented in the argument list. For full control over the order of customizations, only provide `layers`.
#'
#' See [get.ALE()] for explanation of parameters not described here.
#'
#' @param plots_obj ALEPlots object to customize.
#' @param x_cols,exclude_cols See documentation for [get.ALE()]
#' @param ... not used. Inserted to require explicit naming of subsequent arguments.
#' @param type See documentation for [get.ALE()]
#' @param cats See documentation for [get.ALE()]
#' @param layers List of `ggplot` layers. These are appended to each plot indicated by the combination of `x_cols`, `type`, and `cats` by applying the `ggplot2` `+` operator to them.
#' @param zoom_x,zoom_y numeric(2). Zoom the specified plots in or out to match the specified x or y limits, respectively. Must be a two-element numeric vector where the first element <= the second. Default `NULL` does not zoom.
#'
#' @returns An `ALEPlots` object where elements specified by x_cols and exclude_cols are modified accordingly. Non-specified elements are not modified.
#'
customize <- function(
plots_obj,
x_cols = NULL,
...,
exclude_cols = NULL,
type = 'ale',
cats = NULL,
layers = NULL,
zoom_x = NULL,
zoom_y = NULL
) {
## Internal functions -----------
add_layers <- function(plot, lyrs) {
tryCatch(
{
plot + lyrs
},
error = \(e) {
cli_abort(c(
'Error attempting to add {.arg layers} to one or more plots.',
'i' = 'Are they valid ggplot layers?',
'i' = '{layers}',
'x' = '{e}'
))
}
)
}
## Validate inputs -------------
# Error if any unlisted argument is used (captured in ...).
# Never skip this validation step!
rlang::check_dots_empty()
all_plot_cols <- plots_obj@params$requested_x_cols |>
unlist() |>
str_split(':') |>
unlist()
if (is.null(x_cols)) {
len_d1 <- length(plots_obj@params$requested_x_cols$d1)
len_d2 <- length(plots_obj@params$requested_x_cols$d2)
if (len_d1 >= 1 && len_d2 == 0) {
x_cols <- plots_obj@params$requested_x_cols$d1
} else if (len_d2 >= 1 && len_d1 == 0) {
x_cols <- plots_obj@params$requested_x_cols$d2
} else if (len_d1 >= 1 && len_d2 >= 1) {
cli_abort(c(
'When both 1D and 2D plots exist, you must specify only one kind in {.arg x_cols} since they are very different kinds of plots.'
))
} else if (len_d1 == 0 && len_d2 == 0) {
cli_abort(c(
'There are no plots available to customize.'
))
}
}
x_cols <- resolve_x_cols(
x_cols = x_cols,
col_names = all_plot_cols,
y_col = plots_obj@params$y_col,
exclude_cols = exclude_cols
)
vap <- validate_ALEPlots_method_args(plots_obj, type, cats)
type <- vap$type
y_cats <- vap$y_cats
all_cats <- vap$all_cats
# Note: layers will not be validated directly because there are too many valid possibilities.
# Its validation will be handled via a tryCatch block later.
validate(
is.null(zoom_x) ||
(is.numeric(zoom_x) && length(zoom_x) == 2 && zoom_x[1] <= zoom_x[2]),
msg = '{.arg zoom_x} must be either {.val NULL} or else a two-element numeric vector where the first element <= the second.'
)
validate(
is.null(zoom_y) ||
(is.numeric(zoom_y) && length(zoom_y) == 2 && zoom_y[1] <= zoom_y[2]),
msg = '{.arg zoom_y} must be either {.val NULL} or else a two-element numeric vector where the first element <= the second.'
)
## Create customization layers ------------
custom_layers <- layers %||% list()
# The procedure is sometimes problematic if the input isn't wrapped in a list, so, automatically wrap a single layer that is not a bare list.
if (!rlang::is_bare_list(layers)) {
layers <- list(layers)
}
# Add zoom layers
if (!is.null(zoom_x) || !is.null(zoom_y)) {
custom_layers <- c(
custom_layers,
coord_cartesian(xlim = zoom_x, ylim = zoom_y)
)
}
## Append layers to specified plots --------------
# if (!all_cats) {
cats <- if (is.null(cats)) {
y_cats
} else if (all_cats) {
'.all_cats'
} else {
cats
}
plots_obj@plots <- plots_obj@plots |>
imap(\(it.cat_plots, it.cat_name) {
if (it.cat_name %in% cats) {
if (type == 'ale') {
it.cat_plots |>
imap(\(it.el, it.el_name) {
if (it.el_name %in% names(x_cols)) {
for (it.term in x_cols[[it.el_name]]) {
it.el[[it.term]] <- add_layers(it.el[[it.term]], custom_layers)
# it.el[[it.term]] <- it.el[[it.term]] +
# custom_layers
}
it.el
} else {
it.el
}
})
}
else if (type == 'effect') {
add_layers(it.cat_plots$eff, custom_layers)
# it.cat_plots$eff +
# custom_layers
}
else if (it.cat_name == '.all_cats') {
## TODO: cat plots need careful debugging
it.cat_plots |>
imap(\(it.el, it.el_name) {
if (it.el_name %in% names(x_cols)) {
x_cols[[it.el_name]] |>
map(\(it.term) {
add_layers(it.el[[it.term]][[type]], custom_layers)
# it.el[[it.term]][[type]] +
# custom_layers
}) |>
set_names(x_cols[[it.el_name]])
} else {
it.el
}
})
} else {
# that type was not specified; return it unmodified
it.cat_plots
}
}
else {
# it.cat_name not specified; return it unmodified
it.cat_plots
}
}) |>
# Suppress "Coordinate system already present" message
suppressMessages()
## Return ----------
return(plots_obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.