View source: R/NonparTrawlEstimation.R
asymptotic_variance_est | R Documentation |
This function estimates the asymptotic variance which appears in the CLT for the trawl function estimation.
asymptotic_variance_est(t, c4, varlevyseed = 1, Delta, avector, N = NULL)
t |
The time point at which to compute the asymptotic variance |
c4 |
The fourth cumulant of the Levy seed of the trawl process |
varlevyseed |
The variance of the Levy seed of the trawl process, the default is 1 |
Delta |
The width Delta of the observation grid |
avector |
The vector (\hat a(0), \hat a(Δ_n), ..., \hat a((n-1)Δ_n)) |
N |
The optional parameter to specify the upper bound N_n in the computations of the estimators |
As derived in Sauri and Veraart (2022), the estimated asymptotic variance is given by
\hat σ^2_a(t)=\hat v_1(t)+\hat v_2(t)+\hat v_3(t)+\hat v_4(t),
where
\hat{v}_{1}(t):=\widehat{c_{4}(L')}\hat{a}(t)=RQ_n\hat{a}(t)/ \hat{a}(0),
for
RQ_n:=\frac{1}{√{2 nΔ_{n}}} ∑_{k=0}^{n-2}(X_{(k+1)Δ_n}-X_{kΔ_n})^4,
and
\hat{v}_{2}(t):=2∑_{l=0}^{N_{n}}\hat{a}^{2}(lΔ_{n}) Δ_{n},
\hat{v}_{3}(t):=2∑_{l=0}^{\min\{i,n-1-i\}}\hat{a}((i-l)Δ_{n}) \hat{a}((i+l)Δ_{n})Δ_{n},
\hat{v}_{4}(t):=-2∑_{l=i}^{N_{n}-i}\hat{a}((l-i)Δ_{n}) \hat{a}((i+l)Δ_{n})Δ_{n}.
The estimated asymptotic variance \hat v=\hat σ_a^2(t) and its components \hat v_1, \hat v_2, \hat v_3, \hat v_4.
##Simulate a trawl process ##Determine the sampling grid my_n <- 1000 my_delta <- 0.1 my_t <- my_n*my_delta ###Choose the model parameter #Exponential trawl function: my_lambda <- 2 #Poisson marginal distribution trawl my_v <- 1 #Set the seed set.seed(123) #Simulate the trawl process Poi_data <- sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path #Estimate the trawl function my_lag <- 100+1 trawl <- nonpar_trawlest(Poi_data, my_delta, lag=my_lag)$a_hat #Estimate the fourth cumulant of the trawl process c4_est <- c4est(Poi_data, my_delta) asymptotic_variance_est(t=1, c4=c4_est, varlevyseed=1, Delta=my_delta, avector=trawl)$v
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.