View source: R/NonparTrawlEstimation.R
trawl_deriv_mod | R Documentation |
This function estimates the derivative of the trawl function using the modified version proposed in Sauri and Veraart (2022).
trawl_deriv_mod(data, Delta, lag = 100)
data |
The data set used to compute the derivative of the trawl function |
Delta |
The width Delta of the observation grid |
lag |
The lag until which the trawl function should be estimated |
According to Sauri and Veraart (2022), the derivative of the trawl function can be estimated based on observations X_0, X_{Δ_n}, …, X_{(n-1)Δ_n} by
\widehat a(t)=\frac{1}{√{ nΔ_{n}^2}} ∑_{k=l+1}^{n-2}(X_{(k+1)Δ_n}-X_{kΔ_n}) (X_{(k-l+1)Δ_n}-X_{(k-l)Δ_n}),
for Δ_nl≤q t < (l+1)Δ_n.
The function returns the lag-dimensional vector (\hat a'(0), \hat a'(Δ), …, \hat a'((lag-1) Δ)).
##Simulate a trawl process ##Determine the sampling grid my_n <- 1000 my_delta <- 0.1 my_t <- my_n*my_delta ###Choose the model parameter #Exponential trawl function: my_lambda <- 2 #Poisson marginal distribution trawl my_v <- 1 #Set the seed set.seed(123) #Simulate the trawl process Poi_data <- sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path #Estimate the trawl function my_lag <- 100+1 trawl <- nonpar_trawlest(Poi_data, my_delta, lag=my_lag)$a_hat #Estimate the derivative of the trawl function trawl_deriv <- trawl_deriv_mod(Poi_data, my_delta, lag=100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.