View source: R/NonparTrawlEstimation.R
test_asymnorm_est | R Documentation |
This function computes the feasible statistics associated with the CLT for the trawl function estimation.
test_asymnorm_est( data, Delta, trawlfct, trawlfct_par, biascor = FALSE, k = NULL )
data |
The data set based on observations of X_0, X_{Δ_n}, …, X_{(n-1)Δ_n} |
Delta |
The width Delta of the observation grid |
trawlfct |
The trawl function for which the asymptotic variance will be computed (Exp, supIG or LM) |
trawlfct_par |
The parameter vector of the trawl function (Exp: lambda, supIG: delta, gamma, LM: alpha, H) |
biascor |
A binary variable determining whether a bias correction should be computed, the default is FALSE |
k |
The optional parameter specifying the time point in 0, 1, …, n-1; the test statistic will be computed for the time point k Δ_n. |
As derived in Sauri and Veraart (2022), the feasible statistic, for t>0, is given by
T(t)_n:=\frac{√{nΔ_{n}}}{√{\widehat{σ_{a}^2(t)}}} ≤ft(\hat{a}(t)-a(t)-bias(t)\right).
For t=0, we have
T(t)_n:=\frac{√{nΔ_{n}}}{√{RQ_n}} ≤ft(\hat{a}(0)-a(0)-bias(0)\right),
where
RQ_n:=\frac{1}{√{2 nΔ_{n}}} ∑_{k=0}^{n-2}(X_{(k+1)Δ_n}-X_{kΔ_n})^4.
We set bias(t)=0 in the case when biascor==FALSE and bias(t)=0.5 * Δ * \hat a'(t) otherwise.
The function returns the vector of the feasible statistics (T(0)_n, T((Δ)_n, …, T((n-2)Δ_n)) if no bias correction is required and (T(0)_n, T((Δ)_n, …, T((n-3)Δ_n)) if bias correction is required if k is not provided, otherwise it returns the value T(k Δ_n)_n. If the estimated asymptotic variance is <= 0, the value of the test statistic is set to 999.
##Simulate a trawl process ##Determine the sampling grid my_n <- 1000 my_delta <- 0.1 my_t <- my_n*my_delta ###Choose the model parameter #Exponential trawl function: my_lambda <- 2 #Poisson marginal distribution trawl my_v <- 1 #Set the seed set.seed(123) #Simulate the trawl process Poi_data <- sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path #Compute the test statistic for time t=0 ##Either one can use: test_asymnorm_est(Poi_data, my_delta, trawlfct="Exp", trawlfct_par=my_lambda)[1] #or: test_asymnorm_est(Poi_data, my_delta, trawlfct="Exp", trawlfct_par=my_lambda, k=0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.