Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true"),
out.width = "100%"
)
## ----message = FALSE, eval = TRUE---------------------------------------------
# load libraries
library(aopdata)
library(sf)
library(ggplot2)
library(data.table)
library(units)
## ----message = FALSE, eval = TRUE---------------------------------------------
df <- read_access(city='Curitiba',
mode='public_transport',
peak = TRUE,
year=2019,
showProgress = FALSE)
## ----message = FALSE, eval = TRUE---------------------------------------------
ggplot() +
geom_boxplot(data=subset(df, !is.na(R003)),
aes(x = factor(R003), y=CMATT60/1000, color=factor(R003))) +
scale_color_brewer(palette = 'RdBu') +
labs(title='Distribution of the number of jobs accessible', color="Income\ndecile",
subtitle='by public transport in less than 60 min. by income decile',
x='Income decile', y="N. of jobs accessible\n(thousands)") +
scale_x_discrete(labels=c("D1 Poorest", paste0('D', 2:9), "D10 Wealthiest")) +
theme_minimal()
## ----message = FALSE, eval = TRUE---------------------------------------------
# average access of the wealthiest 10%
avg_access_10p_wealthiest <- df[ R003==10, weighted.mean(x=CMATT60, w=P001, na.rm=T)]
# average access of the poorest 40%
avg_access_40p_poorest <- df[ R003<=4, weighted.mean(x=CMATT60, w=P001, na.rm=T)]
# Palma ratio
palma_ratio <- avg_access_10p_wealthiest / avg_access_40p_poorest
palma_ratio
## ----message = FALSE, eval = TRUE---------------------------------------------
message( paste0('In less than 60 min. by public transport, the 10% wealthiest population could access on average ', round(palma_ratio,1), ' times more job opportunites than the 40% poorest people') )
## ----message = FALSE, eval = TRUE---------------------------------------------
# replace Inf travel time with 120
df[, TMISA := fifelse(TMISA==Inf, 120, TMISA)]
# calculate avarage travel time by race
df[, .(average = weighted.mean(x=TMISA, w=P001, na.rm=T),
white = weighted.mean(x=TMISA, w=P002, na.rm=T),
black = weighted.mean(x=TMISA, w=P003, na.rm=T))]
# calculate avarage travel time by income
temp <- df[, .(average = weighted.mean(x=TMISA, w=P001, na.rm=T)), by=R003]
temp <- na.omit(temp)
ggplot() +
geom_point(data=temp, aes(y=average, x=factor(R003))) +
labs(x='Income decile', y='Avg. travel time to\nclosest hospital') +
theme_minimal()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.