Description Usage Arguments Details Value Note Author(s) References See Also Examples
plothulls plots convex hulls of a bivariate data set.
1 2 |
x |
two column matrix of the coordinates of points of x-values of a data set |
y |
if x is one dimensional then y contains the y-values of the data set |
fraction |
... of points that lies inside the hull to be plotted |
n.hull |
number of directions sequential hulls to be plotted |
main |
title for the graphics |
add |
if TRUE no new plot is initialized |
col.hull |
color(s) of the hull(s) |
lty.hull |
line type(s) of the hull(s) |
lwd.hull |
line width(s) of the hull(s) |
density |
density argument of polygon() that draws the hulls |
... |
further arguments used in the call of plot() or points() |
The function plothulls
computes hulls of a bivariate data set using the
function chull
. After finding a hull the hull maybe plotted.
Then the data points of the hull will be removed and
the hull of the remaining points is computed.
The style of plotting a hull depends on the setting of
col.hull
, lty.hull
, lwd.hull
and density
.
density=NA
has the effect that the regions of the hulls are filled by a color.
Using fraction
you can plot a single hull.
n.hull
defines the number of hull that should be drawn one after the other.
The hull(s) are stored as a list of matrices with two columns, the innermost first and so on.
Version of plothulls: 10/2013
Peter Wolf
Green, P.J. (1981): Peeling bivariate data. In: Interpreting Multivariate Data, V. Barnett (ed.), pp 3-19, Wiley. Porzio, Giovanni C., Ragozini, Giancarlo (2000): Peeling multvariate data sets: a new approach. Quanderni di Statistica, Vol. 2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # 10 hulls computed from the faithful data and plotted
plothulls(faithful, n.hull=10, lty.hull=1)
# plotting additionally a hull with 90 percent of points within the hull
plot(faithful)
plothulls(faithful, fraction=.90, add=TRUE, col.hull="red", lwd.hull=3)
# hull with 10 percent of points within the hull
plothulls(faithful, fraction=.10, col.hull="red", lwd.hull=3)
# first 3 hulls of the cars data set
n <- 3
plothulls(cars, n.hull=n, col.hull=1:n, lty.hull=1:n)
# 5 hulls represented by colored regions
n <- 5
cols <- heat.colors(9)[3:(3+n-1)]
plothulls(cars, n.hull=n, col.hull=cols, lty.hull=1:n, density=NA, col=0)
points(cars, pch=17, cex=1)
# 6 hulls: regions colored and boundaries shown
n <- 6
cols <- rainbow(n)
plothulls(cars, n.hull=n, col.hull=cols, lty.hull=1:n, density=NA, col=0)
plothulls(cars, n.hull=n, add=TRUE, col.hull=1, lwd.hull=2, lty=1, col=0)
|
Loading required package: tcltk
Warning message:
no DISPLAY variable so Tk is not available
[[1]]
x.hull y.hull
[1,] 2.200 45
[2,] 1.983 43
[3,] 1.783 46
[4,] 1.750 47
[5,] 1.600 52
[6,] 1.667 64
[7,] 3.500 87
[8,] 4.083 93
[9,] 5.100 96
[10,] 5.067 76
[[2]]
x.hull y.hull
[1,] 2.350 47
[2,] 2.150 46
[3,] 1.917 45
[4,] 1.867 45
[5,] 1.750 47
[6,] 1.700 59
[7,] 1.750 62
[8,] 2.383 71
[9,] 3.317 83
[10,] 4.133 91
[11,] 4.800 94
[12,] 5.000 88
[13,] 5.033 77
[14,] 4.700 73
[[3]]
x.hull y.hull
[1,] 3.833 64
[2,] 2.417 50
[3,] 2.167 48
[4,] 1.833 46
[5,] 1.817 46
[6,] 1.750 48
[7,] 1.733 54
[8,] 1.750 58
[9,] 1.833 63
[10,] 2.133 67
[11,] 3.600 85
[12,] 3.967 89
[13,] 4.400 92
[14,] 4.617 93
[15,] 4.900 89
[16,] 4.933 88
[17,] 4.933 86
[18,] 4.900 82
[19,] 4.800 75
[[4]]
x.hull y.hull
[1,] 2.883 55
[2,] 2.317 50
[3,] 1.833 46
[4,] 1.750 54
[5,] 1.817 60
[6,] 2.067 65
[7,] 3.600 83
[8,] 4.333 90
[9,] 4.783 90
[10,] 4.933 86
[11,] 4.817 77
[12,] 4.800 76
[13,] 4.750 75
[[5]]
x.hull y.hull
[1,] 2.617 53
[2,] 1.867 47
[3,] 1.783 52
[4,] 1.817 59
[5,] 1.983 62
[6,] 3.600 83
[7,] 4.150 88
[8,] 4.417 90
[9,] 4.450 90
[10,] 4.716 90
[11,] 4.850 86
[12,] 4.883 83
[13,] 4.817 78
[14,] 4.733 75
[[6]]
x.hull y.hull
[1,] 2.217 50
[2,] 2.100 49
[3,] 1.867 48
[4,] 1.800 51
[5,] 1.800 54
[6,] 1.833 59
[7,] 4.000 86
[8,] 4.333 89
[9,] 4.650 90
[10,] 4.800 84
[11,] 4.833 80
[12,] 4.767 78
[13,] 4.533 73
[[7]]
x.hull y.hull
[1,] 2.800 56
[2,] 2.250 51
[3,] 2.017 49
[4,] 1.867 49
[5,] 1.800 53
[6,] 1.833 57
[7,] 1.850 58
[8,] 3.767 83
[9,] 3.850 84
[10,] 4.367 88
[11,] 4.700 88
[12,] 4.800 82
[13,] 4.833 80
[14,] 4.500 73
[[8]]
x.hull y.hull
[1,] 2.400 53
[2,] 1.933 49
[3,] 1.917 49
[4,] 1.867 50
[5,] 1.800 53
[6,] 1.883 58
[7,] 2.017 60
[8,] 2.400 65
[9,] 3.917 84
[10,] 4.000 85
[11,] 4.150 86
[12,] 4.600 88
[13,] 4.800 81
[14,] 4.700 78
[15,] 4.500 73
[[9]]
x.hull y.hull
[1,] 2.417 54
[2,] 2.167 52
[3,] 2.033 51
[4,] 1.867 50
[5,] 1.833 54
[6,] 1.983 59
[7,] 2.333 64
[8,] 3.683 81
[9,] 4.183 86
[10,] 4.417 87
[11,] 4.700 84
[12,] 4.700 80
[13,] 4.667 78
[14,] 4.533 74
[15,] 4.067 69
[[10]]
x.hull y.hull
[1,] 4.300 72
[2,] 4.100 70
[3,] 1.950 51
[4,] 1.867 51
[5,] 1.833 54
[6,] 2.000 59
[7,] 3.450 78
[8,] 3.833 82
[9,] 4.083 84
[10,] 4.350 85
[11,] 4.600 85
[12,] 4.667 84
[13,] 4.700 83
[14,] 4.583 76
[15,] 4.467 74
x.hull y.hull
[1,] 3.833 64
[2,] 2.417 50
[3,] 2.167 48
[4,] 1.833 46
[5,] 1.817 46
[6,] 1.750 48
[7,] 1.733 54
[8,] 1.750 58
[9,] 1.833 63
[10,] 2.133 67
[11,] 3.600 85
[12,] 3.967 89
[13,] 4.400 92
[14,] 4.617 93
[15,] 4.900 89
[16,] 4.933 88
[17,] 4.933 86
[18,] 4.900 82
[19,] 4.800 75
x.hull y.hull
[1,] 4.233 76
[2,] 4.133 75
[3,] 3.567 71
[4,] 3.750 75
[5,] 4.233 81
[6,] 4.350 82
[7,] 4.417 79
[[1]]
x.hull y.hull
[1,] 20 32
[2,] 15 20
[3,] 7 4
[4,] 4 2
[5,] 4 10
[6,] 14 80
[7,] 24 120
[8,] 25 85
[9,] 23 54
[[2]]
x.hull y.hull
[1,] 19 36
[2,] 12 14
[3,] 9 10
[4,] 7 22
[5,] 18 84
[6,] 24 93
[7,] 24 70
[[3]]
x.hull y.hull
[1,] 17 32
[2,] 15 26
[3,] 11 17
[4,] 8 16
[5,] 10 34
[6,] 14 60
[7,] 18 76
[8,] 24 92
[9,] 22 66
[10,] 20 48
[[1]]
x.hull y.hull
[1,] 20 32
[2,] 15 20
[3,] 7 4
[4,] 4 2
[5,] 4 10
[6,] 14 80
[7,] 24 120
[8,] 25 85
[9,] 23 54
[[2]]
x.hull y.hull
[1,] 19 36
[2,] 12 14
[3,] 9 10
[4,] 7 22
[5,] 18 84
[6,] 24 93
[7,] 24 70
[[3]]
x.hull y.hull
[1,] 17 32
[2,] 15 26
[3,] 11 17
[4,] 8 16
[5,] 10 34
[6,] 14 60
[7,] 18 76
[8,] 24 92
[9,] 22 66
[10,] 20 48
[[4]]
x.hull y.hull
[1,] 16 32
[2,] 12 20
[3,] 10 18
[4,] 10 26
[5,] 13 46
[6,] 15 54
[7,] 19 68
[8,] 20 64
[9,] 20 52
[10,] 19 46
[[5]]
x.hull y.hull
[1,] 14 26
[2,] 12 24
[3,] 11 28
[4,] 18 56
[5,] 20 56
[6,] 18 42
[[1]]
x.hull y.hull
[1,] 20 32
[2,] 15 20
[3,] 7 4
[4,] 4 2
[5,] 4 10
[6,] 14 80
[7,] 24 120
[8,] 25 85
[9,] 23 54
[[2]]
x.hull y.hull
[1,] 19 36
[2,] 12 14
[3,] 9 10
[4,] 7 22
[5,] 18 84
[6,] 24 93
[7,] 24 70
[[3]]
x.hull y.hull
[1,] 17 32
[2,] 15 26
[3,] 11 17
[4,] 8 16
[5,] 10 34
[6,] 14 60
[7,] 18 76
[8,] 24 92
[9,] 22 66
[10,] 20 48
[[4]]
x.hull y.hull
[1,] 16 32
[2,] 12 20
[3,] 10 18
[4,] 10 26
[5,] 13 46
[6,] 15 54
[7,] 19 68
[8,] 20 64
[9,] 20 52
[10,] 19 46
[[5]]
x.hull y.hull
[1,] 14 26
[2,] 12 24
[3,] 11 28
[4,] 18 56
[5,] 20 56
[6,] 18 42
[[6]]
x.hull y.hull
[1,] 13 26
[2,] 12 28
[3,] 13 34
[4,] 17 50
[5,] 17 40
[[1]]
x.hull y.hull
[1,] 20 32
[2,] 15 20
[3,] 7 4
[4,] 4 2
[5,] 4 10
[6,] 14 80
[7,] 24 120
[8,] 25 85
[9,] 23 54
[[2]]
x.hull y.hull
[1,] 19 36
[2,] 12 14
[3,] 9 10
[4,] 7 22
[5,] 18 84
[6,] 24 93
[7,] 24 70
[[3]]
x.hull y.hull
[1,] 17 32
[2,] 15 26
[3,] 11 17
[4,] 8 16
[5,] 10 34
[6,] 14 60
[7,] 18 76
[8,] 24 92
[9,] 22 66
[10,] 20 48
[[4]]
x.hull y.hull
[1,] 16 32
[2,] 12 20
[3,] 10 18
[4,] 10 26
[5,] 13 46
[6,] 15 54
[7,] 19 68
[8,] 20 64
[9,] 20 52
[10,] 19 46
[[5]]
x.hull y.hull
[1,] 14 26
[2,] 12 24
[3,] 11 28
[4,] 18 56
[5,] 20 56
[6,] 18 42
[[6]]
x.hull y.hull
[1,] 13 26
[2,] 12 28
[3,] 13 34
[4,] 17 50
[5,] 17 40
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.