Nothing
library("arulesSequences")
## basic tests using the small running
## example from the paper.
##
## ceeboo 2007, 2014, 2015, 2016
## data set
data(zaki)
zaki.txt <-
read_baskets(con = system.file("misc", "zaki.txt",
package = "arulesSequences"),
info = c("sequenceID","eventID","SIZE"))
all.equal(zaki, zaki.txt)
## methods of class sequences
## IGNORE_RDIFF_BEGIN
s1 <- cspade(zaki, parameter = list(support = 0.4),
control = list(verbose =TRUE))
## IGNORE_RDIFF_END
s1
s2 <- cspade(zaki, parameter = list(support = 0.4, maxsize = 2, maxlen = 2))
s2
nitems(s1)
nitems(s1, itemsets = TRUE)
nitems(s2)
nitems(s2, itemsets = TRUE)
labels(s1, setSep = "->", seqStart = "", seqEnd = "")
summary(s1)
inspect(s1)
data.frame(items = itemLabels(s1),
counts = itemFrequency(s1))
data.frame(items = itemLabels(s2),
counts = itemFrequency(s2))
data.frame(itemsets = itemLabels(s2, itemsets = TRUE),
counts = itemFrequency(s2, itemsets = TRUE))
as(s2, "data.frame")
sequenceInfo(s2) <- sequenceInfo(s2)
sequenceInfo(s2)
itemInfo(s2) <- itemInfo(s2)
itemInfo(s2)
## fixme?
t <- itemTable(s2)
rownames(t) <-
itemLabels(s2)[as.integer(rownames(t))]
t
t <- itemTable(s2, itemsets = TRUE)
rownames(t) <-
itemLabels(s2, itemsets = TRUE)[as.integer(rownames(t))]
t
d1 <- as(s1, "data.frame")
d1$size <- size(s1)
d1$length <- size(s1, type = "length")
d1$ritems <- ritems(s1, "max")
d1$maximal <- is.maximal(s1)
d1
as(s1@elements, "data.frame")
d1[s1 %in% c("D", "F"), 1:2]
d1[s1 %ain% c("D", "F"), 1:2]
d1[s1 %pin% "D", 1:2]
as(subset(s1, x %ain% c("D", "F")), "data.frame")
as(subset(s1, support == 1), "data.frame")
match(s2,s1)
match(s1,s2)
# problem with new-style S4
# and rbind of data.frame()
s <- unique(c(s1,s2)) # uses duplicated
match(s1, s)
all.equal(s1, s)
all.equal(s1, c(s[1], s1[-1])) # test info
all.equal(quality(s1)$support, support(s1, zaki))
## rules
r1 <- ruleInduction(s1, confidence = 0.5)
r1
r2 <- ruleInduction(s2, confidence = 0.5)
r2
labels(r1, itemSep = "->", setStart = "", setEnd = "")
summary(r1)
inspect(r1)
as(r2, "data.frame")
as(subset(r2, lhs(x) %in% c("B", "F")), "data.frame")
as(subset(r2, lhs(x) %ain% c("B", "F")), "data.frame")
as(subset(r2, confidence == 1), "data.frame")
match(r2, r1)
match(r1, r2)
r <- unique(c(r1, r2))
match(r1, r)
all.equal(r1, r)
s <- as(r2, "sequences")
match(s, s2)
all.equal(r1, c(r1[1], r1[-1])) # test info
## timed
z <- as(zaki, "timedsequences")
all.equal(z, c(z[1], z[-1]))
## fixme: different orders of item labels
#all.equal(z, c(z[1,reduce=TRUE], z[-1,reduce=TRUE]))
## disabled
## IGNORE_RDIFF_BEGIN
z <- cspade(zaki, parameter = list(support = 0.4, maxwin = 5),
control = list(verbose =TRUE))
## IGNORE_RDIFF_END
identical(s1, z)
## tidLists
## IGNORE_RDIFF_BEGIN
s1 <- cspade(zaki, parameter = list(support = 0.4),
control = list(verbose =TRUE, tidLists = TRUE))
## IGNORE_RDIFF_END
summary(tidLists(s1))
transactionInfo(tidLists(s1))
z <- supportingTransactions(s1, zaki)
all.equal(tidLists(s1[1:4, ]), z[1:4, ])
z <- support(s1, zaki, control = list(parameter = list()))
all.equal(z, quality(s1)$support)
## drop times
z <- as(as(zaki, "timedsequences"), "sequences")
z <- support(s1, z, control = list(parameter = list()))
all.equal(z, quality(s1)$support)
##
z <- quality(s1)$support
z <- z > apply(is.subset(s1, proper = TRUE), 1L, function(x)
suppressWarnings(max(z[x])))
all.equal(z, is.closed(s1))
##
r <- ruleInduction(s2[size(s2) > 1L], zaki, confidence = 0.5)
all.equal(as(r2, "data.frame"), as(r, "data.frame"))
##
k <- rhs(r1) %ain% "A"
z <- quality(r1)$confidence[k]
z <- z <= apply(is.superset(lhs(r1)[k], proper = TRUE), 1L, function(x)
suppressWarnings(max(z[x])))
all.equal(z, is.redundant(r1)[k])
###
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.