tests/zaki.R

library("arulesSequences")

## basic tests using the small running 
## example from the paper. 
##
## ceeboo 2007, 2014, 2015, 2016

## data set

data(zaki)

zaki.txt <- 
    read_baskets(con  = system.file("misc", "zaki.txt", 
                                    package = "arulesSequences"),
                 info = c("sequenceID","eventID","SIZE"))

all.equal(zaki, zaki.txt)

## methods of class sequences

## IGNORE_RDIFF_BEGIN
s1 <- cspade(zaki, parameter = list(support = 0.4), 
                   control   = list(verbose =TRUE))
## IGNORE_RDIFF_END
s1
s2 <- cspade(zaki, parameter = list(support = 0.4, maxsize = 2, maxlen = 2))
s2

nitems(s1)
nitems(s1, itemsets = TRUE)
nitems(s2)
nitems(s2, itemsets = TRUE)
labels(s1, setSep = "->", seqStart = "", seqEnd = "")
summary(s1)
inspect(s1)

data.frame(items  = itemLabels(s1), 
           counts = itemFrequency(s1))
data.frame(items  = itemLabels(s2),
           counts = itemFrequency(s2)) 
data.frame(itemsets = itemLabels(s2, itemsets = TRUE),
           counts   = itemFrequency(s2, itemsets = TRUE))

as(s2, "data.frame")

sequenceInfo(s2) <- sequenceInfo(s2)
sequenceInfo(s2)

itemInfo(s2) <- itemInfo(s2)
itemInfo(s2)

## fixme?
t <- itemTable(s2)
rownames(t) <- 
itemLabels(s2)[as.integer(rownames(t))]
t
t <- itemTable(s2, itemsets = TRUE)
rownames(t) <- 
itemLabels(s2, itemsets = TRUE)[as.integer(rownames(t))]
t


d1 <- as(s1, "data.frame")
d1$size    <- size(s1)
d1$length  <- size(s1, type = "length")
d1$ritems  <- ritems(s1, "max")
d1$maximal <- is.maximal(s1)
d1

as(s1@elements, "data.frame")

d1[s1 %in%  c("D", "F"), 1:2]
d1[s1 %ain% c("D", "F"), 1:2]
d1[s1 %pin% "D", 1:2]

as(subset(s1, x %ain% c("D", "F")), "data.frame")
as(subset(s1, support == 1), "data.frame")

match(s2,s1)
match(s1,s2)

# problem with new-style S4
# and rbind of data.frame()
s <- unique(c(s1,s2))           # uses duplicated
match(s1, s)
all.equal(s1, s)

all.equal(s1, c(s[1], s1[-1]))  # test info

all.equal(quality(s1)$support, support(s1, zaki))

## rules

r1 <- ruleInduction(s1, confidence = 0.5)
r1
r2 <- ruleInduction(s2, confidence = 0.5)
r2

labels(r1, itemSep = "->", setStart = "", setEnd = "")
summary(r1)
inspect(r1)

as(r2, "data.frame")

as(subset(r2, lhs(x) %in%  c("B", "F")), "data.frame")
as(subset(r2, lhs(x) %ain% c("B", "F")), "data.frame")
as(subset(r2, confidence == 1), "data.frame")

match(r2, r1)
match(r1, r2)

r <- unique(c(r1, r2))
match(r1, r)
all.equal(r1, r)

s <- as(r2, "sequences")
match(s, s2)

all.equal(r1, c(r1[1], r1[-1])) # test info

## timed

z <- as(zaki, "timedsequences")
all.equal(z, c(z[1], z[-1]))

## fixme: different orders of item labels
#all.equal(z, c(z[1,reduce=TRUE], z[-1,reduce=TRUE]))

## disabled

## IGNORE_RDIFF_BEGIN
z <- cspade(zaki, parameter = list(support = 0.4, maxwin = 5), 
                  control   = list(verbose =TRUE))
## IGNORE_RDIFF_END

identical(s1, z)

## tidLists

## IGNORE_RDIFF_BEGIN
s1 <- cspade(zaki, parameter = list(support = 0.4), 
                   control   = list(verbose =TRUE, tidLists = TRUE))
## IGNORE_RDIFF_END
summary(tidLists(s1))
transactionInfo(tidLists(s1))

z <- supportingTransactions(s1, zaki)
all.equal(tidLists(s1[1:4, ]), z[1:4, ])

z <- support(s1, zaki, control = list(parameter = list()))
all.equal(z, quality(s1)$support)

## drop times
z <- as(as(zaki, "timedsequences"), "sequences")
z <- support(s1, z, control = list(parameter = list()))
all.equal(z, quality(s1)$support)

##
z <- quality(s1)$support
z <- z > apply(is.subset(s1, proper = TRUE), 1L, function(x)
	       suppressWarnings(max(z[x])))
all.equal(z, is.closed(s1))

##
r <- ruleInduction(s2[size(s2) > 1L], zaki, confidence = 0.5)
all.equal(as(r2, "data.frame"), as(r, "data.frame"))

##
k <- rhs(r1) %ain% "A"
z <- quality(r1)$confidence[k]
z <- z <= apply(is.superset(lhs(r1)[k], proper = TRUE), 1L, function(x)
		suppressWarnings(max(z[x])))
all.equal(z, is.redundant(r1)[k])


###

Try the arulesSequences package in your browser

Any scripts or data that you put into this service are public.

arulesSequences documentation built on Sept. 11, 2024, 9:35 p.m.