partial.resid.plot | R Documentation |
The function creates partial residual plots which help a user graphically determine the effect of a single predictor with respect to all other predictors in a multiple regression model.
partial.resid.plot(x, smooth.span = 0.8, lf.col = 2, sm.col = 4,...)
x |
A output object of class |
smooth.span |
Degree of smoothing for smoothing line. |
lf.col |
Color for linear fit. |
sm.col |
Color for smoother fit. |
... |
Additional arguments from |
Creates partial residual plots (see Kutner et al. 2002). Smoother lines from lowess
and linear fits from lm
are imposed over plots to help an investigator determine the effect of a particular X variable on Y with all other variables in the model. The function automatically inserts explanatory variable names on axes.
Returns p partial residual plots, where p = the number of explanatory variables.
Ken Aho
Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li. (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.
partial.R2
if(interactive()){
Soil.C<-c(13,20,10,11,2,25,30,25,23)
Soil.N<-c(1.2,2,1.5,1,0.3,2,3,2.7,2.5)
Slope<-c(15,14,16,12,10,18,25,24,20)
Aspect<-c(45,120,100,56,5,20,5,15,15)
Y<-c(20,30,10,15,5,45,60,55,45)
x <- lm(Y ~ Soil.N + Soil.C + Slope + Aspect)
op <- par(mfrow=c(2,2),mar=c(5,4,1,1.5))
partial.resid.plot(x)
par(op)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.