| rmvm | R Documentation | 
Contains a Y variable constrained to be a random function of fifteen X variables, which, in turn, are generated from a multivariate normal distribution with no correlation between dimensions.
data("rmvm")A data frame with 500 observations on the following 16 variables.
YA response vector defined to be: Y =  X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 +
X_8 + X_9 + X_{10} + X_{11} + X_{12} + X_{13} + X_{14} + X_{15} + \epsilon where \epsilon \sim N(0, 1).
X1A random predictor
X2A random predictor
X3A random predictor
X4A random predictor
X5A random predictor
X6A random predictor
X7A random predictor
X8A random predictor
X9A random predictor
X10A random predictor
X11A random predictor
X12A random predictor
X13A random predictor
X14A random predictor
X15A random predictor
Data used by Derryberry et al. (in review) to consider high dimensional model selection applications.
Derryberry, D., Aho, K., Peterson, T., Edwards, J. (In review). Finding the "best" second order regression model in a polynomial number of steps. American Statistician.
## Code used to create data
## Not run: 
sigma <- matrix(nrow = 15, ncol = 15, 0)
diag(sigma) = 1
mvn <- rmvnorm(n=500, mean=rnorm(15), sigma=sigma)
Y <- mvn[,1] + mvn[,2] + mvn[,3] + mvn[,4] + mvn[,4] + mvn[,5] + mvn[,6] + mvn[,7] +
mvn[,8] + mvn[,9] + mvn[,10] + mvn[,11] + mvn[,12] + mvn[,13] + mvn[,14] + mvn[15] + rnorm(500)
rmvm <- data.frame(cbind(Y, mvn))
names(rmvm) <- c("Y", paste("X", 1:15, sep = ""))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.