Nothing
#' Cross-validation for asmbPLS to find the best combinations of quantiles for prediction
#'
#' Function to find the best combinations of quantiles used for prediction via
#' cross-validation. Usually should be conducted before
#' \code{\link[asmbPLS]{asmbPLS.fit}} to obtain the quantile combinations.
#'
#' @param X.matrix Predictors matrix. Samples in rows, variables in columns.
#' @param Y.matrix Outcome matrix. Samples in rows, this is a matrix with one
#' column (continuous variable). The outcome could be imputed survival time or
#' other types of continuous outcome. For survival time with right-censored
#' survival time and event indicator, the right censored time could be imputed
#' by \code{\link{meanimp}}.
#' @param PLS.comp Number of PLS components in asmbPLS.
#' @param X.dim A vector containing the number of predictors in each block
#' (ordered).
#' @param quantile.comb.table A matrix containing user-defined quantile
#' combinations used for CV, whose column number equals to the
#' number of blocks.
#' @param Y.indicator A vector containing the event indicator for each sample,
#' whose length is equal to the number of samples. This vector allows the ratio
#' of observed/unobserved to be the same in the training set and validation set.
#' Observed = 1, and unobserved = 0. If other types of outcome data rather than
#' survival outcome is used, you can use a vector with all components = 1
#' instead.
#' @param k The number of folds of CV procedure. The default is 5.
#' @param ncv The number of repetitions of CV. The default is 5.
#' @param only.observe Whether only observed samples in the validation set
#' should be used for calculating the MSE for CV. The default is TRUE.
#' @param expected.measure.decrease The measure you expect to decrease by percent
#' after including one more PLS component, which will affect the selection of optimal
#' PLS components. The default is 0.05 (5\%).
#' @param center A logical value indicating whether mean center should be
#' implemented for X.matrix and Y.matrix. The default is TRUE.
#' @param scale A logical value indicating whether scale should be
#' implemented for X.matrix and Y.matrix. The default is TRUE.
#' @param maxiter A integer indicating the maximum number of iteration. The
#' default number is 100.
#'
#' @return
#' \code{asmbPLS.cv} returns a list containing the following components:
#' \item{quantile_table_CV}{A matrix containing the selected quantile
#' combination and the corresponding measures of CV for each PLS component.}
#' \item{optimal_nPLS}{Optimal number of PLS components.}.
#'
#' @examples
#' ## Use the example dataset
#' data(asmbPLS.example)
#' X.matrix = asmbPLS.example$X.matrix
#' Y.matrix = asmbPLS.example$Y.matrix
#' PLS.comp = asmbPLS.example$PLS.comp
#' X.dim = asmbPLS.example$X.dim
#' quantile.comb.table.cv = asmbPLS.example$quantile.comb.table.cv
#' Y.indicator = asmbPLS.example$Y.indicator
#'
#' ## cv to find the best quantile combinations for model fitting
#' cv.results <- asmbPLS.cv(X.matrix = X.matrix,
#' Y.matrix = Y.matrix,
#' PLS.comp = PLS.comp,
#' X.dim = X.dim,
#' quantile.comb.table = quantile.comb.table.cv,
#' Y.indicator = Y.indicator,
#' k = 5,
#' ncv = 3)
#' quantile.comb <- cv.results$quantile_table_CV[,1:length(X.dim)]
#' n.PLS <- cv.results$optimal_nPLS
#'
#' ## asmbPLS fit
#' asmbPLS.results <- asmbPLS.fit(X.matrix = X.matrix,
#' Y.matrix = Y.matrix,
#' PLS.comp = n.PLS,
#' X.dim = X.dim,
#' quantile.comb = quantile.comb)
#'
#' @export
#' @useDynLib asmbPLS, .registration=TRUE
#' @importFrom Rcpp sourceCpp
#' @importFrom stats quantile
asmbPLS.cv <- function(X.matrix, Y.matrix, PLS.comp, X.dim, quantile.comb.table,
Y.indicator, k = 5, ncv = 5, only.observe = TRUE,
expected.measure.decrease = 0.05,
center = TRUE, scale = TRUE, maxiter = 100) {
## error check
stopifnot(!missing(X.matrix),
!missing(Y.matrix),
!missing(PLS.comp),
!missing(X.dim),
!missing(quantile.comb.table),
!missing(Y.indicator),
is.matrix(X.matrix),
is.matrix(Y.matrix),
is.matrix(quantile.comb.table),
is.numeric(PLS.comp))
cv_results <- asmbPLS_CV(X.matrix, Y.matrix, PLS.comp, X.dim, quantile.comb.table, Y.indicator, k, ncv, only.observe, expected.measure.decrease, center, scale, maxiter)
colnames(cv_results$quantile_table_CV) <- c(paste0("X.", 1:length(X.dim)), "MSE")
return(cv_results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.