Nothing
## ----eval=FALSE---------------------------------------------------------------
# # Example when the model is a file
# model_path <- file.path(Sys.getenv('AZUREML_MODEL_DIR'), 'my_model.rds')
#
# # Example when the model is a folder containing a file
# model_path <- file.path(Sys.getenv('AZUREML_MODEL_DIR'), 'my_model_folder', 'my_model.rds')
#
## ----eval=FALSE---------------------------------------------------------------
# # Example when the model is a file, and the deployment contains multiple versions of the same model
# first_model_path <- file.path(Sys.getenv('AZUREML_MODEL_DIR'), 'my_model', '1', 'my_model.rds')
#
# second_model_path <- file.path(Sys.getenv('AZUREML_MODEL_DIR'), 'my_model', '2', 'my_model.rds')
## ----eval=FALSE---------------------------------------------------------------
# library(jsonlite)
#
# init <- function()
# {
# # Get the path to the model location of the registered model in Azure ML
# model_path <- Sys.getenv("AZUREML_MODEL_DIR")
#
# # Load the model
# model <- readRDS(file.path(model_path, "model.rds"))
# message("logistic regression model loaded")
#
# # The following method will be called by Azure ML each time the deployed web service is invoked
# function(data)
# {
# # Deserialize the input data to the service
# vars <- as.data.frame(fromJSON(data))
#
# # Evaluate the data on the deployed model
# prediction <- as.numeric(predict(model, vars, type="response")*100)
#
# # Return the prediction serialized to JSON
# toJSON(prediction)
# }
# }
## ----eval=FALSE---------------------------------------------------------------
# myenv = get_environment(ws, name = 'myenv', version = '1')
#
# inference_config = inference_config(entry_script = 'score.R',
# source_directory = './my_scoring_folder',
# environment = myenv)
#
## ----eval=FALSE---------------------------------------------------------------
# deployment_config <- aci_webservice_deployment_config(cpu_cores = 1,
# memory_gb = 1,
# auth_enabled = TRUE)
## ----eval=FALSE---------------------------------------------------------------
# # Generate the primary auth key
# primary_key <- generate_new_webservice_key(service, key_type = "Primary")
#
# # Generate the secondary auth key
# secondary_key <- generate_new_webservice_key(service, key_type = "Secondary")
## ----eval=FALSE---------------------------------------------------------------
# deployment_config <- aks_webservice_deployment_config(cpu_cores = 1,
# memory_gb = 1,
# token_auth_enabled = TRUE)
## ----eval=FALSE---------------------------------------------------------------
# aks_service_access_token <- get_webservice_token(service)
#
# # Get the JWT
# jwt <- aks_service_access_token$access_token
# # Get the time after which token should be refreshed
# refresh_after <- aks_service_access_token$refresh_after
#
## ----eval=FALSE---------------------------------------------------------------
# library(jsonlite)
#
# newdata <- data.frame( # valid values shown below
# dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
# seatbelt="none", # "none" "belted"
# frontal="frontal", # "notfrontal" "frontal"
# sex="f", # "f" "m"
# ageOFocc=22, # age in years, 16-97
# yearVeh=2002, # year of vehicle, 1955-2003
# airbag="none", # "none" "airbag"
# occRole="pass" # "driver" "pass"
# )
#
# prob <- invoke_webservice(service, toJSON(newdata))
# prob
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.