Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----cluster, eval=FALSE------------------------------------------------------
# library(azuremlsdk)
# ws <- load_workspace_from_config()
# ds <- get_default_datastore(ws)
# target_path <- "accidentdata"
#
# download_from_datastore(ds, target_path=".", prefix="accidentdata")
#
# ## Find the compute target
# cluster_name <- "rcluster"
# compute_target <- get_compute(ws, cluster_name = cluster_name)
# if(is.null(compute_target)) stop("Training cluster not found")
## ----accident-glm, eval=FALSE-------------------------------------------------
# ### FROM FILE: accident-glm.R - do not run this code chunk
#
# ## Caret GLM model on training set with 5-fold cross validation
# accident_glm_mod <- train(
# form = dead ~ .,
# data = accident_trn,
# trControl = trainControl(method = "cv", number = 5),
# method = "glm",
# family = "binomial"
# )
# summary(accident_glm_mod)
## ----create-experiment, eval=FALSE--------------------------------------------
# exp <- experiment(ws, "accident")
## ----run-experiment-1, eval=FALSE---------------------------------------------
# est <- estimator(source_directory="experiments-deep-dive",
# entry_script = "accident-glm.R",
# script_params = list("--data_folder" = ds$path(target_path)),
# compute_target = compute_target)
# run <- submit_experiment(exp, est)
## ----view_run, eval=FALSE-----------------------------------------------------
# plot_run_details(run)
## ----tracking_code, eval=FALSE------------------------------------------------
# ### DO NOT RUN THIS CODE CHUNK: tracking code from accident-XXX.R scripts
# log_metric_to_run("Accuracy",
# calc_acc(actual = accident_tst$dead,
# predicted = predict(accident_glmnet_mod, newdata = accident_tst))
# )
# log_metric_to_run("Method", "GLMNET")
# log_metric_to_run("TrainPCT", train.pct)
## ----run-experiment-2, eval=FALSE---------------------------------------------
# est <- estimator(source_directory="experiments-deep-dive",
# entry_script = "accident-knn.R",
# script_params = list("--data_folder" = ds$path(target_path)),
# compute_target = compute_target)
# run <- submit_experiment(exp, est)
#
# est <- estimator(source_directory="experiments-deep-dive",
# entry_script = "accident-glmnet.R",
# script_params = list("--data_folder" = ds$path(target_path)),
# compute_target = compute_target)
# run <- submit_experiment(exp, est)
## ----options-code, eval=FALSE-------------------------------------------------
# ## DO NOT RUN THIS CODE CHUNK: options code from experiment script
# options <- list(
# make_option(c("-d", "--data_folder")),
# make_option(c("-p", "--percent_train"))
# )
#
# opt_parser <- OptionParser(option_list = options)
# opt <- parse_args(opt_parser)
#
# train.pct <- as.numeric(opt$percent_train)
## ----more-experiments, eval=FALSE---------------------------------------------
# train_pct_exp <- 0.80
#
# ## GLM model
# est <- estimator(source_directory = "experiments-deep-dive",
# entry_script = "accident-glm.R",
# script_params = list("--data_folder" = ds$path(target_path),
# "--percent_train" = train_pct_exp),
# compute_target = compute_target
# )
# run.glm <- submit_experiment(exp, est)
#
# ## KNN model
# exp <- experiment(ws, "accident")
# est <- estimator(source_directory = "experiments-deep-dive",
# entry_script = "accident-knn.R",
# script_params = list("--data_folder" = ds$path(target_path),
# "--percent_train" = train_pct_exp),
# compute_target = compute_target
# )
# run.knn <- submit_experiment(exp, est)
#
# ## GLMNET model
# exp <- experiment(ws, "accident")
# est <- estimator(source_directory = "experiments-deep-dive",
# entry_script = "accident-glmnet.R",
# script_params = list("--data_folder" = ds$path(target_path),
# "--percent_train" = train_pct_exp),
# compute_target = compute_target
# )
# run.glmnet <- submit_experiment(exp, est)
## ----check-metrics, eval=FALSE------------------------------------------------
# get_run_metrics(run.glm)$Accuracy
# get_run_metrics(run.knn)$Accuracy
# get_run_metrics(run.glmnet)$Accuracy
## ----retrieve_model, eval=FALSE-----------------------------------------------
# download_files_from_run(run.glmnet, prefix="outputs/")
# accident_model <- readRDS("outputs/model.rds")
#
# model <- register_model(ws,
# model_path = "outputs/model.rds",
# model_name = "accidents_model_caret",
# description = "Predict probability of auto accident using caret")
#
# r_env <- r_environment(name = "basic_env")
#
# inference_config <- inference_config(
# entry_script = "accident_predict_caret.R",
# source_directory = "experiments-deep-dive",
# environment = r_env)
## ----provis-aci, eval=FALSE---------------------------------------------------
# aci_config <- aci_webservice_deployment_config(cpu_cores = 1, memory_gb = 0.5)
#
# aci_service <- deploy_model(ws,
# 'accident-pred-caret',
# list(model),
# inference_config,
# aci_config)
#
# wait_for_deployment(aci_service, show_output = TRUE)
## ----get_endpoint, eval=FALSE-------------------------------------------------
# accident.endpoint <- get_webservice(ws, "accident-pred-caret")$scoring_uri
## ----shiny-app, eval=FALSE----------------------------------------------------
# shiny::runApp("experiments-with-R/accident-app")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.