Nothing
## ----eval=FALSE---------------------------------------------------------------
# library(azuremlsdk)
## ----load_workpace, eval=FALSE------------------------------------------------
# ws <- load_workspace_from_config()
## ----get_workpace, eval=FALSE-------------------------------------------------
# ws <- get_workspace("<your workspace name>", "<your subscription ID>", "<your resource group>")
## ----create_experiment, eval=FALSE--------------------------------------------
# exp <- experiment(workspace = ws, name = 'hyperdrive-cifar10')
## ----create_cluster, eval=FALSE-----------------------------------------------
# cluster_name <- "gpucluster"
#
# compute_target <- get_compute(ws, cluster_name = cluster_name)
# if (is.null(compute_target))
# {
# vm_size <- "STANDARD_NC6"
# compute_target <- create_aml_compute(workspace = ws,
# cluster_name = cluster_name,
# vm_size = vm_size,
# max_nodes = 4)
#
# wait_for_provisioning_completion(compute_target, show_output = TRUE)
# }
## ----create_estimator, eval=FALSE---------------------------------------------
# env <- r_environment("keras-env", custom_docker_image = "amlsamples/r-keras:latest")
#
# est <- estimator(source_directory = "hyperparameter-tune-with-keras",
# entry_script = "cifar10_cnn.R",
# compute_target = compute_target,
# environment = env)
## ----search_space, eval=FALSE-------------------------------------------------
# sampling <- random_parameter_sampling(list(batch_size = choice(c(16, 32, 64)),
# epochs = choice(c(200, 350, 500)),
# lr = normal(0.0001, 0.005),
# decay = uniform(1e-6, 3e-6)))
## ----termination_policy, eval=FALSE-------------------------------------------
# policy <- bandit_policy(slack_factor = 0.15)
## ----create_config, eval=FALSE------------------------------------------------
# hyperdrive_config <- hyperdrive_config(hyperparameter_sampling = sampling,
# primary_metric_goal("MINIMIZE"),
# primary_metric_name = "Loss",
# max_total_runs = 8,
# policy = policy,
# estimator = est)
## ----submit_run, eval=FALSE---------------------------------------------------
# hyperdrive_run <- submit_experiment(exp, hyperdrive_config)
## ----eval=FALSE---------------------------------------------------------------
# plot_run_details(hyperdrive_run)
## ----eval=FALSE---------------------------------------------------------------
# wait_for_run_completion(hyperdrive_run, show_output = TRUE)
## ----analyse_runs, eval=FALSE-------------------------------------------------
# # Get the metrics of all the child runs
# child_run_metrics <- get_child_run_metrics(hyperdrive_run)
# child_run_metrics
#
# # Get the child run objects sorted in descending order by the best primary metric
# child_runs <- get_child_runs_sorted_by_primary_metric(hyperdrive_run)
# child_runs
#
# # Directly get the run object of the best performing run
# best_run <- get_best_run_by_primary_metric(hyperdrive_run)
#
# # Get the metrics of the best performing run
# metrics <- get_run_metrics(best_run)
# metrics
## ----delete_compute, eval=FALSE-----------------------------------------------
# delete_compute(compute_target)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.