Nothing
## ----eval=FALSE---------------------------------------------------------------
# library(azuremlsdk)
## ----load_workpace, eval=FALSE------------------------------------------------
# ws <- load_workspace_from_config()
## ----create_experiment, eval=FALSE--------------------------------------------
# experiment_name <- "accident-logreg"
# exp <- experiment(ws, experiment_name)
## ----create_cluster, eval=FALSE-----------------------------------------------
# cluster_name <- "rcluster"
# compute_target <- get_compute(ws, cluster_name = cluster_name)
# if (is.null(compute_target)) {
# vm_size <- "STANDARD_D2_V2"
# compute_target <- create_aml_compute(workspace = ws,
# cluster_name = cluster_name,
# vm_size = vm_size,
# min_nodes = 1,
# max_nodes = 2)
#
# wait_for_provisioning_completion(compute_target, show_output = TRUE)
# }
## ----load_data, eval=FALSE----------------------------------------------------
# nassCDS <- read.csv("train-and-deploy-first-model/nassCDS.csv",
# colClasses=c("factor","numeric","factor",
# "factor","factor","numeric",
# "factor","numeric","numeric",
# "numeric","character","character",
# "numeric","numeric","character"))
#
# accidents <- na.omit(nassCDS[,c("dead","dvcat","seatbelt","frontal","sex","ageOFocc","yearVeh","airbag","occRole")])
# accidents$frontal <- factor(accidents$frontal, labels=c("notfrontal","frontal"))
# accidents$occRole <- factor(accidents$occRole)
# accidents$dvcat <- ordered(accidents$dvcat,
# levels=c("1-9km/h","10-24","25-39","40-54","55+"))
#
# saveRDS(accidents, file="accidents.Rd")
## ----upload_data, eval=FALSE--------------------------------------------------
# ds <- get_default_datastore(ws)
#
# target_path <- "accidentdata"
# upload_files_to_datastore(ds,
# list("./accidents.Rd"),
# target_path = target_path,
# overwrite = TRUE)
## ----create_estimator, eval=FALSE---------------------------------------------
# est <- estimator(source_directory = "train-and-deploy-first-model",
# entry_script = "accidents.R",
# script_params = list("--data_folder" = ds$path(target_path)),
# compute_target = compute_target
# )
## ----submit_job, eval=FALSE---------------------------------------------------
# run <- submit_experiment(exp, est)
## ----view_run, eval=FALSE-----------------------------------------------------
# plot_run_details(run)
## ----wait_run, eval=FALSE-----------------------------------------------------
# wait_for_run_completion(run, show_output = TRUE)
## ----metrics, eval=FALSE------------------------------------------------------
# metrics <- get_run_metrics(run)
# metrics
## ----retrieve_model, eval=FALSE-----------------------------------------------
# download_files_from_run(run, prefix="outputs/")
# accident_model <- readRDS("outputs/model.rds")
# summary(accident_model)
## ----manual_predict, eval=FALSE-----------------------------------------------
# newdata <- data.frame( # valid values shown below
# dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
# seatbelt="none", # "none" "belted"
# frontal="frontal", # "notfrontal" "frontal"
# sex="f", # "f" "m"
# ageOFocc=16, # age in years, 16-97
# yearVeh=2002, # year of vehicle, 1955-2003
# airbag="none", # "none" "airbag"
# occRole="pass" # "driver" "pass"
# )
#
# ## predicted probability of death for these variables, as a percentage
# as.numeric(predict(accident_model,newdata, type="response")*100)
## ----register_model, eval=FALSE-----------------------------------------------
# model <- register_model(ws,
# model_path = "outputs/model.rds",
# model_name = "accidents_model",
# description = "Predict probablity of auto accident")
## ----create_environment, eval=FALSE-------------------------------------------
# r_env <- r_environment(name = "basic_env")
## ----create_inference_config, eval=FALSE--------------------------------------
# inference_config <- inference_config(
# entry_script = "accident_predict.R",
# source_directory = "train-and-deploy-first-model",
# environment = r_env)
## ----create_aci_config, eval=FALSE--------------------------------------------
# aci_config <- aci_webservice_deployment_config(cpu_cores = 1, memory_gb = 0.5)
## ----deploy_service, eval=FALSE-----------------------------------------------
# aci_service <- deploy_model(ws,
# 'accident-pred',
# list(model),
# inference_config,
# aci_config)
#
# wait_for_deployment(aci_service, show_output = TRUE)
## ----test_deployment, eval=FALSE----------------------------------------------
# library(jsonlite)
#
# newdata <- data.frame( # valid values shown below
# dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
# seatbelt="none", # "none" "belted"
# frontal="frontal", # "notfrontal" "frontal"
# sex="f", # "f" "m"
# ageOFocc=22, # age in years, 16-97
# yearVeh=2002, # year of vehicle, 1955-2003
# airbag="none", # "none" "airbag"
# occRole="pass" # "driver" "pass"
# )
#
# prob <- invoke_webservice(aci_service, toJSON(newdata))
# prob
## ----delete_service, eval=FALSE-----------------------------------------------
# delete_webservice(aci_service)
## ----delete_model, eval=FALSE-------------------------------------------------
# delete_model(model)
## ----delete_compute, eval=FALSE-----------------------------------------------
# delete_compute(compute_target)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.