Nothing
cart_bagger <- function(rs, control, ..., call) {
opt <- rlang::dots_list(...)
is_classif <- is.factor(rs$splits[[1]]$data$.outcome)
mod_spec <- make_cart_spec(is_classif, opt)
iter <- get_iterator(control)
rs <-
rs %>%
dplyr::mutate(
model = iter(
fit_seed,
splits,
seed_fit,
.fn = cart_fit,
spec = mod_spec,
control = control
)
)
rs <- check_for_disaster(rs, call = call)
rs <- filter_rs(rs)
rs <- extractor(rs, control$extract)
imps <- compute_imp(rs, cart_imp, control$var_imp)
rs <-
rs %>%
replace_parsnip_terms()
if (control$reduce) {
rs <-
rs %>%
dplyr::mutate(model = purrr::map(model, axe_cart))
}
list(model = rs, imp = imps)
}
make_cart_spec <- function(classif, opt) {
opts <- join_args(model_defaults[["CART"]], opt)
if (classif) {
cart_md <- "classification"
} else {
cart_md <- "regression"
}
cart_spec <-
parsnip::decision_tree(
mode = cart_md,
cost_complexity = !!opts$cp,
min_n = !!opts$minsplit,
tree_depth = !!opts$maxdepth
)
opts <- opts[!(names(opts) %in% c("cp", "maxdepth", "minsplit"))]
if (length(opts) > 0) {
main_args <- list()
if (any(names(opts) == "method")) {
main_args$method <- opts$method
opts$method <- NULL
}
if (any(names(opts) == "parms")) {
main_args$parms <- opts$parms
opts$parms <- NULL
}
if (any(names(opts) == "cost")) {
main_args$cost <- opts$cost
opts$cost <- NULL
}
if (length(opts) == 0) {
opts <- NULL
}
if (length(main_args) == 0) {
main_args <- NULL
}
# Note: from ?rpart: "arguments to rpart.control may also be specified in
# the call to rpart. They are checked against the list of valid arguments."
cart_spec <-
parsnip::set_engine(cart_spec, engine = "rpart", !!!main_args, !!!opts)
} else {
cart_spec <- parsnip::set_engine(cart_spec, engine = "rpart")
}
cart_spec
}
cart_fit <- function(split, spec, control = control_bag()) {
dat <- rsample::analysis(split)
if (control$sampling == "down") {
dat <- down_sampler(dat)
}
if (any(names(dat) == ".weights")) {
wts <- hardhat::importance_weights(dat$.weights)
dat$.weights <- NULL
} else {
wts <- NULL
}
ctrl <- parsnip::control_parsnip(catch = TRUE)
mod <-
parsnip::fit.model_spec(
spec,
.outcome ~ .,
data = dat,
control = ctrl,
case_weights = wts
)
mod
}
cart_imp <- function(x) {
if (!any(names(x$fit) == "variable.importance")) {
x <-
tibble::tibble(
predictor = rlang::na_chr,
importance = rlang::na_dbl
)
} else {
x <-
tibble::tibble(
predictor = names(x$fit$variable.importance),
importance = unname(x$fit$variable.importance)
)
x <- x[x$importance > 0,]
}
x
}
axe_cart <- function(x) {
x$fit <- butcher::axe_data(x$fit)
x$fit <- butcher::axe_ctrl(x$fit)
x$fit <- butcher::axe_call(x$fit)
x$fit <- butcher::axe_env(x$fit)
x
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.