Nothing
# Copyright (c) 2023 Merlise Clyde and Zhi Ouyang. All rights reserved
# See full license at
# https://github.com/merliseclyde/bark/blob/master/LICENSE.md
#
# SPDX-License-Identifier: GPL-3.0-or-later
test_that("test inputs", {
#regression
traindata <- sim_Friedman2(200, sd=125)
testdata <- sim_Friedman2(1000, sd=0)
# check main input argument types
# no formula (character string)
expect_error(bark("y ~ .", data=data.frame(traindata),
testdata= data.frame(testdata),
nburn=10, nkeep=100, keepevery=10,
classification = FALSE,
common_lambdas = FALSE,
selection = FALSE,
printevery=10^10))
# train ata is not a dataframe
expect_error(bark(y ~ ., data=traindata,
testdata= data.frame(testdata),
nburn=10, nkeep=100, keepevery=10,
classification = FALSE,
common_lambdas = FALSE,
selection = FALSE,
printevery=10^10))
# testdata is not a dataframe
expect_error(bark(y ~ ., data=data.frame(traindata),
testdata=testdata,
nburn=10, nkeep=100, keepevery=10,
classification = FALSE,
common_lambdas = FALSE,
selection = FALSE,
printevery=10^10))
set.seed(42)
n = 500
circle2 = data.frame(sim_circle(n, dim = 2))
train = sample(1:n, size = floor(n/2), rep=FALSE)
expect_error(bark(y ~ ., data=circle2, subset=train,
testdata = circle2[-train, ],
classification = 1,
nburn = 10,
nkeep = 10,
printevery = 10^10))
# dim of test & training disagree
expect_error(bark(y ~ x.1 + x.2., data=circle2, subset=train,
testdata = circle2[-train, "x.1"],
classification = TRUE,
nburn = 10,
nkeep = 10,
printevery = 10^10))
expect_error(bark(y ~ ., data=circle2, subset=train,
testdata = as.matrix(circle2[-train, ]),
classification = 1,
nburn = 10,
nkeep = 10,
printevery = 10^10))
expect_no_error(bark(y ~ ., data=circle2, subset=train,
# testdata = as.matrix(circle2[-train, ]),
classification = TRUE,
nburn = 10,
nkeep = 10,
printevery = 10^10))
expect_error(bark(y ~ ., data=circle2, subset=train,
classification = TRUE,
nburn = 10,
nkeep = 10,
fixed = list(alpha = 2.0),
printevery = 10^10))
})
# github issue #3
test_that("test bark with p=1", {
n = 100; p = 1
df = data.frame(y = rnorm(n), x = rnorm(n))
expect_no_error(bark(y ~ ., data=df,
classification = FALSE,
nburn = 10,
nkeep = 1000,
keepevery = 10,
printevery = 10^10))
expect_no_error(bark_mat(y.train = df$y, x.train = as.matrix(df$x),
x.test = as.matrix(df$x),
classification = FALSE,
nburn = 10,
nkeep = 1000,
keepevery = 10,
printevery = 10^10))
expect_no_error(bark(y ~ ., data=df,
classification = FALSE,
nburn = 10,
nkeep = 1000,
keepevery = 10,
selection = TRUE,
common_lambdas = FALSE,
printevery = 10^10))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.