Nothing
## ---- SETTINGS-knitr, include=FALSE-------------------------------------------
library(bayesDP)
stopifnot(require(knitr))
opts_chunk$set(
#comment = NA,
#message = FALSE,
#warning = FALSE,
#eval = if (isTRUE(exists("params"))) params$EVAL else FALSE,
dev = "png",
dpi = 150,
fig.asp = 0.8,
fig.width = 5,
out.width = "60%",
fig.align = "center"
)
set.seed(42)
fit01 <- bdpbinomial(y_t=10, N_t=500, y0_t=25, N0_t=250, method="fixed")
fit02 <- bdpbinomial(y_t=10, N_t=500, y0_t=10, N0_t=250, method="fixed",
discount_function="weibull")
fit_scaledweibull <- bdpbinomial(y_t=10, N_t=500, y0_t=25, N0_t=250,
discount_function="scaledweibull",
method="fixed")
fit_identity <- bdpbinomial(y_t=10, N_t=500, y0_t=10, N0_t=250,
method="fixed")
## ---- echo=FALSE--------------------------------------------------------------
df2 <- plot(fit_identity, type="discount", print=FALSE)
df2 + ggtitle("Discount function plot", "Identity")
## ---- echo=FALSE--------------------------------------------------------------
df1 <- plot(fit02, type="discount", print=FALSE)
df1 + ggtitle("Discount function plot", "Weibull distribution with shape=3 and scale=0.135")
## -----------------------------------------------------------------------------
p1 <- plot(fit02, type="discount", print=FALSE)
p1 + ggtitle("Discount Function Plot :-)")
## -----------------------------------------------------------------------------
set.seed(42)
### Simulate data
# Sample sizes
n_t <- 30 # Current treatment sample size
n_c <- 30 # Current control sample size
n_t0 <- 80 # Historical treatment sample size
n_c0 <- 80 # Historical control sample size
# Treatment group vectors for current and historical data
treatment <- c(rep(1,n_t), rep(0,n_c))
treatment0 <- c(rep(1,n_t0), rep(0,n_c0))
# Simulate a covariate effect for current and historical data
x <- rnorm(n_t+n_c, 1, 5)
x0 <- rnorm(n_t0+n_c0, 1, 5)
# Simulate outcome:
# - Intercept of 10 for current and historical data
# - Treatment effect of 31 for current data
# - Treatment effect of 30 for historical data
# - Covariate effect of 3 for current and historical data
Y <- 10 + 31*treatment + x*3 + rnorm(n_t+n_c,0,5)
Y0 <- 10 + 30*treatment0 + x0*3 + rnorm(n_t0+n_c0,0,5)
# Place data into separate treatment and control data frames and
# assign historical = 0 (current) or historical = 1 (historical)
df_ <- data.frame(Y=Y, treatment=treatment, x=x)
df0 <- data.frame(Y=Y0, treatment=treatment0, x=x0)
# Fit model using default settings
fit <- bdplm(formula=Y ~ treatment+x, data=df_, data0=df0,
method="fixed")
summary(fit)
print(fit)
#plot(fit) <-- Not yet implemented
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.