Nothing
###############
#MIGRATION
###############
mig.mcmc.sampling <- function(mcmc, thin=1, start.iter=2, verbose=FALSE, verbose.iter=10) {
#Draw a sample of length mcmc$iter from all parameter values.
#Look at mcmc_sampling in bayesTFR. A bunch of initializations happen here.
nSimulations=mcmc$iter
nC=length(mcmc$mu_c)
mcenv <- as.environment(mcmc) # Create an environment for the mcmc stuff in order to avoid
# copying of the mcmc list
mcenv$thin <- thin
###################################################################
# Start MCMC
############
for (simu in start.iter:nSimulations) {
if(verbose.iter > 0 && (simu %% verbose.iter == 0)){
cat('\nIteration:', simu, '--', date(),"\n")
}
#Update all the mu_c values with Gibbs sampling.
for(c in 1:nC){
mcmc.update.mu.c(c,mcenv)
}
#Update sigma^2_mu with Gibbs sampling
mcmc.update.sigma2.mu(mcenv)
#Update all the phi_c values with Gibbs sampling.
for(c in 1:nC){
mcmc.update.phi.c(c,mcenv)
}
#Update all the sigma^2_c values with Gibbs sampling.
for(c in 1:nC){
mcmc.update.sigma2.c(c,mcenv)
}
#Update b with Gibbs sampling.
mcmc.update.b(mcenv)
#Update a with Metropolis.
mcmc.update.a(mcenv)
#Update mu_global with Gibbs sampling
mcmc.update.mu.global(mcenv)
###################################################################
# write samples simu/thin to disk
##################################################################
mcenv$finished.iter <- simu
mcenv$rng.state <- .Random.seed
if (simu %% thin == 0){
mcenv$length <- mcenv$length + 1
flush.buffer <- FALSE
if (simu + thin > nSimulations) flush.buffer <- TRUE
store.mcmc(mcenv, append=TRUE, flush.buffer=flush.buffer, verbose=verbose)
}
} # end simu loop MCMC
#.cleanup.mcmc(mcenv) #Cleanup step goes here.
resmc <- as.list(mcenv)
class(resmc) <- class(mcmc)
return(resmc)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.