bayesRecon-package | R Documentation |
Provides methods for probabilistic reconciliation of hierarchical forecasts of time series. The available methods include analytical Gaussian reconciliation (Corani et al., 2021) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-3-030-67664-3_13")}, MCMC reconciliation of count time series (Corani et al., 2024) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.ijforecast.2023.04.003")}, Bottom-Up Importance Sampling (Zambon et al., 2024) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11222-023-10343-y")}, methods for the reconciliation of mixed hierarchies (Mix-Cond and TD-cond) (Zambon et al., 2024. The 40th Conference on Uncertainty in Artificial Intelligence, accepted).
To learn more about bayesRecon
, start with the vignettes: browseVignettes(package = "bayesRecon")
The package implements reconciliation via conditioning for probabilistic forecasts of hierarchical time series. The main functions are:
reconc_gaussian()
: reconciliation via conditioning of multivariate Gaussian
base forecasts; this is done analytically;
reconc_BUIS()
: reconciliation via conditioning of any probabilistic forecast
via importance sampling; this is the recommended option for non-Gaussian base forecasts;
reconc_MCMC()
: reconciliation via conditioning of discrete probabilistic
forecasts via Markov Chain Monte Carlo;
reconc_MixCond()
: reconciliation via conditioning of mixed hierarchies, where
the upper forecasts are multivariate Gaussian and the bottom forecasts are discrete distributions;
reconc_TDcond()
: reconciliation via top-down conditioning of mixed hierarchies, where
the upper forecasts are multivariate Gaussian and the bottom forecasts are discrete distributions.
temporal_aggregation()
: temporal aggregation of a given time series object of class ts;
get_reconc_matrices()
: aggregation and summing matrices for a temporal hierarchy
of time series from user-selected list of aggregation levels;
schaferStrimmer_cov()
: computes the Schäfer-Strimmer shrinkage estimator for the covariance matrix;
PMF.get_mean()
, PMF.get_var()
, PMF.get_quantile()
, PMF.summary()
, PMF.sample()
:
functions for handling PMF objects.
Maintainer: Dario Azzimonti dario.azzimonti@gmail.com (ORCID)
Authors:
Nicolò Rubattu nicolo.rubattu@idsia.ch (ORCID)
Lorenzo Zambon lorenzo.zambon@idsia.ch (ORCID)
Giorgio Corani giorgio.corani@idsia.ch (ORCID)
Corani, G., Azzimonti, D., Augusto, J.P.S.C., Zaffalon, M. (2021). Probabilistic Reconciliation of Hierarchical Forecast via Bayes' Rule. ECML PKDD 2020. Lecture Notes in Computer Science, vol 12459. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-3-030-67664-3_13")}.
Corani, G., Azzimonti, D., Rubattu, N. (2024). Probabilistic reconciliation of count time series. International Journal of Forecasting 40 (2), 457-469. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.ijforecast.2023.04.003")}.
Zambon, L., Azzimonti, D. & Corani, G. (2024). Efficient probabilistic reconciliation of forecasts for real-valued and count time series. Statistics and Computing 34 (1), 21. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11222-023-10343-y")}.
Zambon, L., Agosto, A., Giudici, P., Corani, G. (2024). Properties of the reconciled distributions for Gaussian and count forecasts. International Journal of Forecasting (in press). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.ijforecast.2023.12.004")}.
Zambon, L., Azzimonti, D., Rubattu, N., Corani, G. (2024). Probabilistic reconciliation of mixed-type hierarchical time series. The 40th Conference on Uncertainty in Artificial Intelligence, accepted.
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.