cheese | R Documentation |
Panel data with sales volume for a package of Borden Sliced Cheese as well as a measure of display activity and price. Weekly data aggregated to the "key" account or retailer/market level.
data(cheese)
A data frame with 5555 observations on the following 4 variables:
...$RETAILER | a list of 88 retailers |
...$VOLUME | unit sales |
...$DISP | percent ACV on display (a measure of advertising display activity) |
...$PRICE | in U.S. dollars |
Boatwright, Peter, Robert McCulloch, and Peter Rossi (1999), "Account-Level Modeling for Trade Promotion," Journal of the American Statistical Association 94, 1063–1073.
Chapter 3, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
data(cheese)
cat(" Quantiles of the Variables ",fill=TRUE)
mat = apply(as.matrix(cheese[,2:4]), 2, quantile)
print(mat)
## example of processing for use with rhierLinearModel
if(0) {
retailer = levels(cheese$RETAILER)
nreg = length(retailer)
nvar = 3
regdata = NULL
for (reg in 1:nreg) {
y = log(cheese$VOLUME[cheese$RETAILER==retailer[reg]])
iota = c(rep(1,length(y)))
X = cbind(iota, cheese$DISP[cheese$RETAILER==retailer[reg]],
log(cheese$PRICE[cheese$RETAILER==retailer[reg]]))
regdata[[reg]] = list(y=y, X=X)
}
Z = matrix(c(rep(1,nreg)), ncol=1)
nz = ncol(Z)
## run each individual regression and store results
lscoef = matrix(double(nreg*nvar), ncol=nvar)
for (reg in 1:nreg) {
coef = lsfit(regdata[[reg]]$X, regdata[[reg]]$y, intercept=FALSE)$coef
if (var(regdata[[reg]]$X[,2])==0) {
lscoef[reg,1]=coef[1]
lscoef[reg,3]=coef[2]
}
else {lscoef[reg,]=coef}
}
R = 2000
Data = list(regdata=regdata, Z=Z)
Mcmc = list(R=R, keep=1)
set.seed(66)
out = rhierLinearModel(Data=Data, Mcmc=Mcmc)
cat("Summary of Delta Draws", fill=TRUE)
summary(out$Deltadraw)
cat("Summary of Vbeta Draws", fill=TRUE)
summary(out$Vbetadraw)
# plot hier coefs
if(0) {plot(out$betadraw)}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.