Nothing
#' Summary function to generate result table from bayesmsm
#'
#' This function generates a ready to use result table that contents the estimated APO and ATE and their 95\% credible intervals
#'
#' @param model A model object from bayesmsm
#'
#' @return A summary table of the results from bayesmsm.
#' @importFrom stats sd quantile
#' @export
#'
#' @examples
#' # 1) Specify simple treatment‐assignment models
#' amodel <- list(
#' c("(Intercept)" = 0, "L1_1" = 0.5, "L2_1" = -0.5),
#' c("(Intercept)" = 0, "L1_2" = 0.5, "L2_2" = -0.5, "A_prev" = 0.3)
#' )
#' # 2) Specify a continuous‐outcome model
#' ymodel <- c("(Intercept)" = 0,
#' "A1" = 0.2,
#' "A2" = 0.3,
#' "L1_2" = 0.1,
#' "L2_2" = -0.1)
#' # 3) Simulate without right‐censoring
#' testdata <- simData(
#' n = 200,
#' n_visits = 2,
#' covariate_counts = c(2, 2),
#' amodel = amodel,
#' ymodel = ymodel,
#' y_type = "continuous",
#' right_censor = FALSE,
#' seed = 123)
#' model <- bayesmsm(ymodel = Y ~ A1 + A2,
#' nvisit = 2,
#' reference = c(rep(0,2)),
#' comparator = c(rep(1,2)),
#' treatment_effect_type = "sq",
#' family = "binomial",
#' data = testdata,
#' wmean = rep(1,200),
#' nboot = 10,
#' optim_method = "BFGS",
#' seed = 890123,
#' parallel = FALSE)
#' summary_bayesmsm(model)
summary_bayesmsm <- function(model) {
# Extract bootstrapped data
bootdata <- model$bootdata
# Calculate summary statistics for each metric
summary_stats <- function(metric) {
mean_val <- mean(bootdata[[metric]])
sd_val <- sd(bootdata[[metric]])
quantiles <- quantile(bootdata[[metric]], probs = c(0.025, 0.975))
return(c(mean = mean_val, sd = sd_val, `2.5%` = quantiles[1], `97.5%` = quantiles[2]))
}
# Initialize a list to store summary statistics
results_list <- list()
# Add summary statistics for reference and comparator
results_list$Reference <- summary_stats("effect_reference")
results_list$Comparator <- summary_stats("effect_comparator")
# Add summary statistics for RD
results_list$RD <- summary_stats("RD")
# Check if RR and OR exist in the bootdata and add them if they do
if ("RR" %in% colnames(bootdata)) {
results_list$RR <- summary_stats("RR")
}
if ("OR" %in% colnames(bootdata)) {
results_list$OR <- summary_stats("OR")
}
# Convert the list to a data frame for better presentation
summary_table <- do.call(rbind, results_list)
# Set the column names explicitly
colnames(summary_table) <- c("mean", "sd", "2.5%", "97.5%")
# Return the summary table
return(summary_table)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.