Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.align = 'center',
fig.width = 9,
fig.height = 6,
warning = F,
message = F
)
## ----warning = FALSE, results=FALSE, force=TRUE, include=FALSE----------------
if (!requireNamespace("bayesmsm", quietly = TRUE)) {
stop("The package 'bayesmsm' is required to run this vignette. Please install it manually using:
devtools::install_github('Kuan-Liu-Lab/bayesmsm')")
} else {
library(bayesmsm)
}
## -----------------------------------------------------------------------------
# 1) Define coefficient lists for 2 visits
amodel <- list(
# Visit 1: logit P(A1=1) = -0.3 + 0.4*L1_1 - 0.2*L2_1
c("(Intercept)" = -0.3, "L1_1" = 0.4, "L2_1" = -0.2),
# Visit 2: logit P(A2=1) = -0.1 + 0.3*L1_2 - 0.1*L2_2 + 0.5*A_prev
c("(Intercept)" = -0.1, "L1_2" = 0.3, "L2_2" = -0.1, "A_prev" = 0.5)
)
# 2) Define outcome model: logistic on treatments and last covariates
ymodel <- c(
"(Intercept)" = -0.8,
"A1" = 0.2,
"A2" = 0.4,
"L1_2" = 0.3,
"L2_2" = -0.3
)
# 3) Define right-censoring models at each visit
cmodel <- list(
# Censor at visit 1 based on baseline covariates and A1
c("(Intercept)" = -1.5, "L1_1" = 0.2, "L2_1" = -0.2, "A" = 0.2),
# Censor at visit 2 based on visit-2 covariates and A2
c("(Intercept)" = -1.5, "L1_2" = 0.1, "L2_2" = -0.1, "A" = 0.3)
)
# 4) Load package and simulate data
simdat_cen <- simData(
n = 100,
n_visits = 2,
covariate_counts = c(2, 2),
amodel = amodel,
ymodel = ymodel,
y_type = "binary",
right_censor = TRUE,
cmodel = cmodel,
seed = 123
)
# 5) Inspect first rows
head(simdat_cen)
## -----------------------------------------------------------------------------
weights_cen <- bayesweight_cen(
trtmodel.list = list(
A1 ~ L1_1 + L2_1,
A2 ~ L1_2 + L2_2 + A1),
cenmodel.list = list(
C1 ~ L1_1 + L2_1 + A1,
C2 ~ L1_2 + L2_2 + A2),
data = simdat_cen,
n.chains = 1,
n.iter = 200,
n.burnin = 100,
n.thin = 1,
seed = 890123,
parallel = FALSE)
summary(weights_cen$weights)
## -----------------------------------------------------------------------------
cat(weights_cen$model_string)
## -----------------------------------------------------------------------------
# Remove all NAs (censored observations) from the original dataset and weights
simdat_cen$weights <- weights_cen$weights
simdat_cen2 <- na.omit(simdat_cen)
model <- bayesmsm(ymodel = Y ~ A1 + A2,
nvisit = 2,
reference = c(rep(0,2)),
comparator = c(rep(1,2)),
family = "binomial",
data = simdat_cen2,
wmean = simdat_cen2$weights,
nboot = 50,
optim_method = "BFGS",
parallel = TRUE,
seed = 890123,
ncore = 2)
str(model)
## -----------------------------------------------------------------------------
summary_bayesmsm(model)
## -----------------------------------------------------------------------------
plot_ATE(model)
## -----------------------------------------------------------------------------
plot_APO(model, effect_type = "effect_comparator")
plot_APO(model, effect_type = "effect_reference")
## -----------------------------------------------------------------------------
plot_est_box(model)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.