Nothing
#' Plots for Markov chain Monte Carlo simulations
#'
#' @name MCMC-overview
#' @aliases MCMC
#' @family MCMC
#'
#' @description
#' The **bayesplot** MCMC module provides various plotting functions for
#' creating graphical displays of Markov chain Monte Carlo (MCMC) simulations.
#' The **MCMC plotting functions** section, below, provides links to the
#' documentation for various categories of MCMC plots. Currently the MCMC
#' plotting functions accept posterior draws provided in one of the following
#' formats:
#' * __3-D array__: An array with dimensions `Iteration, Chain, Parameter` in
#' that order.
#' * __list__: A list of matrices, where each matrix corresponds to a Markov
#' chain. All of the matrices should have the same number of iterations (rows)
#' and parameters (columns), and parameters should have the same names and be in
#' the same order.
#' * __matrix (2-D array)__: A matrix with one column per parameter. If using
#' matrix there should only be a single Markov chain or all chains should
#' already be merged (stacked).
#' * __data frame__: There are two types of data frames allowed. Either a data
#' frame with one column per parameter (if only a single chain or all chains
#' have already been merged), or a data frame with one column per parameter plus
#' an additional column `"Chain"` that contains the chain number (an integer)
#' corresponding to each row in the data frame.
#' * __draws__: Any of the `draws` formats supported by the
#' \pkg{\link{posterior}} package.
#'
#' __Note__: typically the user should *not* include warmup iterations
#' in the object passed to **bayesplot** plotting functions, although for
#' certain plots (e.g. trace plots) it can occasionally be useful to include the
#' warmup iterations for diagnostic purposes.
#'
#' @section MCMC plotting functions:
#'
#' * [Posterior distributions][MCMC-distributions]:
#' Histograms and kernel density plots of parameter draws, optionally
#' showing each Markov chain separately.
#' * [Uncertainty intervals][MCMC-intervals]: Uncertainty intervals computed
#' from parameter draws.
#' * [Trace plots][MCMC-traces]: Times series of parameter draws, optionally
#' including HMC/NUTS diagnostic information.
#' * [Scatterplots][MCMC-scatterplots]: Scatterplots, heatmaps, and pairs
#' plots of parameter draws, optionally including HMC/NUTS diagnostic
#' information.
#' * [Parallel coordinates plots][MCMC-parcoord]: Parallel coordinates plot
#' of MCMC draws (one dimension per parameter), optionally including
#' HMC/NUTS diagnostic information.
#' * [Combos][MCMC-combos]: Combination plots (e.g. trace plot + histogram).
#' * [General MCMC diagnostics][MCMC-diagnostics]: MCMC diagnostic plots
#' including R-hat, effective sample size, autocorrelation.
#' [NUTS diagnostics][MCMC-nuts]: Special diagnostic plots for
#' the No-U-Turn Sampler.
#' * [Comparisons to "true" values][MCMC-recover]: Plots comparing MCMC
#' estimates to "true" parameter values (e.g., values used to simulate data).
#'
#' @template reference-vis-paper
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.