Nothing
#************************************************************************
# Vitale 75 Bernstein Polynomial approximation as described in
# Leblanc's 09 paper:
#
# @article{Leblanc2010,
# title = {A bias-reduced approach to density estimation using
# Bernstein polynomials},
# author = {Leblanc, Alexandre},
# journal = {Journal of Nonparametric Statistics},
# year = {2010},
# volume = {22},
# number = {4},
# pages = {459--475}
# }
#
# @article{Vitale1975,
# title = {A Bernstein polynomial approach to density function
# estimation},
# author = {Vitale, R. A.},
# journal = {Statistical Inference and Related Topics},
# year = {1975},
# volume = {2},
# pages = {87--99}
# }
#
#************************************************************************
setClass(
Class = "Vitale",
representation = representation(),
contains = "BernsteinPolynomials"
)
setValidity(
Class = "Vitale",
method = function(object) {
if (length(object@dataPoints) == 0){
stop("A data set with at least one point is needed")
}else if (any(object@dataPoints < 0) || any(object@dataPoints > 1)){
stop("Data points outside the bounds [lower.limit,upper.limit]")
}else if (object@m < 0){
stop("The order for Bernstein estimator (m) must be > 0")
}else{}
return(TRUE)
}
)
setMethod(
f = "density",
signature = "Vitale",
definition = function(x,values,scaled = FALSE) {
.Object <- x
x <- values
isMatrix.x <- is.matrix(x)
#dims = [nrows,ncols]
dims <- dim(x)
if(!scaled){
# scale the data to the 0-1 interval
x <- getScaledPoints(.Object,x)
}
# if any value in x is lower than 0 or grater than 1 its density is 0
numDataPoints <- length(x)
index.nozero <- which(x>=0 & x <=1)
x <- x[index.nozero]
if(length(x) == 0){ # all elements in x were out of bound
return(rep(0,numDataPoints - length(index.nozero)))
}
# x is considered as a vector even if it is a matrix(elements taken by columns)
x.indices <- rep(0,times = length(x))
x.densities <- numeric(0)
if(length(.Object@densityCache) == length(.Object@dataPointsCache)){
# if there are density values calculated in the cache, first we look
# at the cache to check whether some of the values in x have been already calculated
x.indices <- match(x, .Object@dataPointsCache, nomatch=0)
if(any(x.indices > 0)){
# the density of some of the points are already calculated in the cache
x.densities[x.indices != 0] <- .Object@densityCache[x.indices[x.indices!=0]]
}else{}
}else{}
# the data poins whose densities are not calculated in the cache
x.new <- x[x.indices == 0]
x.new.length <- length(x.new)
if(x.new.length > 0){
# There are densities to be calculated
aux <- sapply(0:(.Object@m - 1), FUN =
function(k,m,x){
n <- length(.Object@dataPoints)
#Fn <- sum((.Object@dataPoints > k/m) & (.Object@dataPoints <= (k+1)/m)) / n
Fn <- (sum(.Object@dataPoints <= (k+1)/m) - sum(.Object@dataPoints <= k/m)) / n
return(Fn * dbeta(x,k+1,m-k))
}, m = .Object@m, x = x.new)
# if x.new contains more than one data points, aux is a matrix where the calculated values for each
# data point in x.new are stored by rows. However, if x.new is a single value, aux cointains a vector
# with the calculated values the data point in x.new
if(is.matrix(aux)){
densities <- rowSums(aux)
}else{
densities <- sum(aux)
}
x.densities[x.indices == 0] <- densities
}else{}
# include the density (density=0) of the out-of-bound x points in the final result
aux.density <- numeric(numDataPoints)
aux.density[index.nozero] <- x.densities
x.densities <- aux.density
#if x is a matrix, we storte the densities as a matrix object
if(isMatrix.x){
dim(x.densities) <- dims
}
##if data are in another scale (not in the [0,1] interval) we should
## normalize the density by dividing it by the length
## of the interval so that the density integrates to 1
domain.length <- .Object@upper.limit - .Object@lower.limit
if(!scaled){
x.densities <- x.densities/domain.length
}
return(x.densities)
}
)
#####################################
## Constructor functions for users ##
#####################################
vitale <- function(dataPoints, m=round(length(dataPoints)^(2/5)), dataPointsCache=NULL, lower.limit=0,upper.limit=1){
#cat("~~~~~~ Vitale: constructor ~~~~~~\n")
dataPoints.scaled <- dataPoints
dataPointsCache.scaled <- dataPointsCache
if(is.null(dataPointsCache)){
dataPointsCache.scaled <- seq(0,1,0.01)
}
if(lower.limit!=0 || upper.limit!=1){
dataPoints.scaled <- (dataPoints-lower.limit)/(upper.limit-lower.limit)
if(!is.null(dataPointsCache)){
dataPointsCache.scaled <- (dataPointsCache-lower.limit)/(upper.limit-lower.limit)
}
}
polinomialModel <- new(Class="Vitale",dataPoints = dataPoints.scaled, m = m, dataPointsCache = dataPointsCache.scaled,
lower.limit=lower.limit,upper.limit=upper.limit)
setDensityCache(polinomialModel, densityFunction=NULL)
return(polinomialModel)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.