Nothing
test_that("add_common_attrs works against an S3 object of class mcmc.list, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples, NA))
expect_s3_class(nb_indep_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
expect_no_error(
add_common_attrs(
samples = nb_indep_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
samples <- add_common_attrs(
samples = nb_indep_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
expect_failure(expect_s3_class(samples, NA))
expect_s3_class(samples, "mcmc.list")
expect_identical(
names(attributes(samples)),
c("class", "doses", "n_b1", "covariate_names", "formula")
)
})
test_that("add_class_and_attrs.beaver_negbin_indep works against an S3 object of class mcmc.list, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples, NA))
expect_s3_class(nb_indep_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
expect_no_error(
add_class_and_attrs.beaver_negbin_indep(
samples = nb_indep_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
samples <- add_class_and_attrs.beaver_negbin_indep(
samples = nb_indep_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
expect_failure(expect_s3_class(samples, NA))
expect_s3_class(samples, "mcmc.list")
expect_identical(
names(attributes(samples)),
c("class", "doses", "n_b1", "covariate_names", "formula")
)
expect_identical(
class(samples),
c("beaver_mcmc_negbin_indep", "beaver_mcmc", "mcmc.list")
)
})
test_that("add_class_and_attrs works identically to add_class_and_attrs.beaver_negbin_indep", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples, NA))
expect_s3_class(nb_indep_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
model_class <- c("beaver_negbin_indep")
model <- list()
class(model) <- model_class
expect_no_error(
add_class_and_attrs(
model = model,
samples = nb_indep_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
expect_identical(
add_class_and_attrs(
model = model,
samples = nb_indep_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
),
add_class_and_attrs.beaver_negbin_indep(
samples = nb_indep_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
})
test_that("add_class_and_attrs.beaver_negbin_emax works against an S3 object of class mcmc.list, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_emax_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_emax_model_samples, NA))
expect_s3_class(nb_emax_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
expect_no_error(
add_class_and_attrs.beaver_negbin_emax(
samples = nb_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
samples <- add_class_and_attrs.beaver_negbin_emax(
samples = nb_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
expect_failure(expect_s3_class(samples, NA))
expect_s3_class(samples, "mcmc.list")
expect_identical(
names(attributes(samples)),
c("class", "doses", "n_b1", "covariate_names", "formula")
)
expect_identical(
class(samples),
c("beaver_mcmc_negbin_emax", "beaver_mcmc", "mcmc.list")
)
})
test_that("add_class_and_attrs works identically to add_class_and_attrs.beaver_negbin_emax", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_emax_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_emax_model_samples, NA))
expect_s3_class(nb_emax_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
model_class <- c("beaver_negbin_emax")
model <- list()
class(model) <- model_class
expect_no_error(
add_class_and_attrs(
model = model,
samples = nb_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
expect_identical(
add_class_and_attrs(
model = model,
samples = nb_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
),
add_class_and_attrs.beaver_negbin_emax(
samples = nb_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
})
test_that("add_class_and_attrs.beaver_negbin_sigmoid_emax works against an S3 object of class mcmc.list, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_sigmoid_emax_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_sigmoid_emax_model_samples, NA))
expect_s3_class(nb_sigmoid_emax_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
expect_no_error(
add_class_and_attrs.beaver_negbin_sigmoid_emax(
samples = nb_sigmoid_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
samples <- add_class_and_attrs.beaver_negbin_sigmoid_emax(
samples = nb_sigmoid_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
expect_failure(expect_s3_class(samples, NA))
expect_s3_class(samples, "mcmc.list")
expect_identical(
names(attributes(samples)),
c("class", "doses", "n_b1", "covariate_names", "formula")
)
expect_identical(
class(samples),
c("beaver_mcmc_negbin_sigmoid_emax", "beaver_mcmc", "mcmc.list")
)
})
test_that("add_class_and_attrs works identically to add_class_and_attrs.beaver_negbin_sigmoid_emax", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_sigmoid_emax_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_sigmoid_emax_model_samples, NA))
expect_s3_class(nb_sigmoid_emax_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
model_class <- c("beaver_negbin_sigmoid_emax")
model <- list()
class(model) <- model_class
expect_no_error(
add_class_and_attrs(
model = model,
samples = nb_sigmoid_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
expect_identical(
add_class_and_attrs(
model = model,
samples = nb_sigmoid_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
),
add_class_and_attrs.beaver_negbin_sigmoid_emax(
samples = nb_sigmoid_emax_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
})
test_that("add_class_and_attrs.beaver_negbin_linear works against an S3 object of class mcmc.list, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_linear_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_linear_model_samples, NA))
expect_s3_class(nb_linear_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
expect_no_error(
add_class_and_attrs.beaver_negbin_linear(
samples = nb_linear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
samples <- add_class_and_attrs.beaver_negbin_linear(
samples = nb_linear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
expect_failure(expect_s3_class(samples, NA))
expect_s3_class(samples, "mcmc.list")
expect_identical(
names(attributes(samples)),
c("class", "doses", "n_b1", "covariate_names", "formula")
)
expect_identical(
class(samples),
c("beaver_mcmc_negbin_linear", "beaver_mcmc", "mcmc.list")
)
})
test_that("add_class_and_attrs works identically to add_class_and_attrs.beaver_negbin_linear", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_linear_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_linear_model_samples, NA))
expect_s3_class(nb_linear_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
model_class <- c("beaver_negbin_linear")
model <- list()
class(model) <- model_class
expect_no_error(
add_class_and_attrs(
model = model,
samples = nb_linear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
expect_identical(
add_class_and_attrs(
model = model,
samples = nb_linear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
),
add_class_and_attrs.beaver_negbin_linear(
samples = nb_linear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
})
test_that("add_class_and_attrs.beaver_negbin_loglinear works against an S3 object of class mcmc.list, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_loglinear_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_loglinear_model_samples, NA))
expect_s3_class(nb_loglinear_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
expect_no_error(
add_class_and_attrs.beaver_negbin_loglinear(
samples = nb_loglinear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
samples <- add_class_and_attrs.beaver_negbin_loglinear(
samples = nb_loglinear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
expect_failure(expect_s3_class(samples, NA))
expect_s3_class(samples, "mcmc.list")
expect_identical(
names(attributes(samples)),
c("class", "doses", "n_b1", "covariate_names", "formula")
)
expect_identical(
class(samples),
c("beaver_mcmc_negbin_loglinear", "beaver_mcmc", "mcmc.list")
)
})
test_that("add_class_and_attrs works identically to add_class_and_attrs.beaver_negbin_loglinear", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_loglinear_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_loglinear_model_samples, NA))
expect_s3_class(nb_loglinear_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
model_class <- c("beaver_negbin_loglinear")
model <- list()
class(model) <- model_class
expect_no_error(
add_class_and_attrs(
model = model,
samples = nb_loglinear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
expect_identical(
add_class_and_attrs(
model = model,
samples = nb_loglinear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
),
add_class_and_attrs.beaver_negbin_loglinear(
samples = nb_loglinear_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
})
test_that("add_class_and_attrs.beaver_negbin_quad works against an S3 object of class mcmc.list, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_quad_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_quad_model_samples, NA))
expect_s3_class(nb_quad_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
expect_no_error(
add_class_and_attrs.beaver_negbin_quad(
samples = nb_quad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
samples <- add_class_and_attrs.beaver_negbin_quad(
samples = nb_quad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
expect_failure(expect_s3_class(samples, NA))
expect_s3_class(samples, "mcmc.list")
expect_identical(
names(attributes(samples)),
c("class", "doses", "n_b1", "covariate_names", "formula")
)
expect_identical(
class(samples),
c("beaver_mcmc_negbin_quad", "beaver_mcmc", "mcmc.list")
)
})
test_that("add_class_and_attrs works identically to add_class_and_attrs.beaver_negbin_quad", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_quad_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_quad_model_samples, NA))
expect_s3_class(nb_quad_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
model_class <- c("beaver_negbin_quad")
model <- list()
class(model) <- model_class
expect_no_error(
add_class_and_attrs(
model = model,
samples = nb_quad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
expect_identical(
add_class_and_attrs(
model = model,
samples = nb_quad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
),
add_class_and_attrs.beaver_negbin_quad(
samples = nb_quad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
})
test_that("add_class_and_attrs.beaver_negbin_logquad works against an S3 object of class mcmc.list, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_logquad_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_logquad_model_samples, NA))
expect_s3_class(nb_logquad_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
expect_no_error(
add_class_and_attrs.beaver_negbin_logquad(
samples = nb_logquad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
samples <- add_class_and_attrs.beaver_negbin_logquad(
samples = nb_logquad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
expect_failure(expect_s3_class(samples, NA))
expect_s3_class(samples, "mcmc.list")
expect_identical(
names(attributes(samples)),
c("class", "doses", "n_b1", "covariate_names", "formula")
)
expect_identical(
class(samples),
c("beaver_mcmc_negbin_logquad", "beaver_mcmc", "mcmc.list")
)
})
test_that("add_class_and_attrs works identically to add_class_and_attrs.beaver_negbin_logquad", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_logquad_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_logquad_model_samples, NA))
expect_s3_class(nb_logquad_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
model_class <- c("beaver_negbin_logquad")
model <- list()
class(model) <- model_class
expect_no_error(
add_class_and_attrs(
model = model,
samples = nb_logquad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
expect_identical(
add_class_and_attrs(
model = model,
samples = nb_logquad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
),
add_class_and_attrs.beaver_negbin_logquad(
samples = nb_logquad_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
})
test_that("add_class_and_attrs.beaver_negbin_exp works against an S3 object of class mcmc.list, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_exp_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_exp_model_samples, NA))
expect_s3_class(nb_exp_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
expect_no_error(
add_class_and_attrs.beaver_negbin_exp(
samples = nb_exp_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
samples <- add_class_and_attrs.beaver_negbin_exp(
samples = nb_exp_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
expect_failure(expect_s3_class(samples, NA))
expect_s3_class(samples, "mcmc.list")
expect_identical(
names(attributes(samples)),
c("class", "doses", "n_b1", "covariate_names", "formula")
)
expect_identical(
class(samples),
c("beaver_mcmc_negbin_exp", "beaver_mcmc", "mcmc.list")
)
})
test_that("add_class_and_attrs works identically to add_class_and_attrs.beaver_negbin_exp", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
load(test_path("fixtures", "nb_exp_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_exp_model_samples, NA))
expect_s3_class(nb_exp_model_samples, "mcmc.list")
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
model_class <- c("beaver_negbin_exp")
model <- list()
class(model) <- model_class
expect_no_error(
add_class_and_attrs(
model = model,
samples = nb_exp_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
expect_identical(
add_class_and_attrs(
model = model,
samples = nb_exp_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
),
add_class_and_attrs.beaver_negbin_exp(
samples = nb_exp_model_samples,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
formula = formula
)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.