Nothing
test_that("get_log_post_pred works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
expect_failure(expect_named(nb_monotone_incr, NULL))
expect_no_error(
checkmate::assertSubset(
c("dose", "response"),
names(nb_monotone_incr)
)
)
expect_true(is.numeric(nb_monotone_incr$dose))
expect_true(is.numeric(nb_monotone_incr$response))
formula <- ~ 1
nb_monotone_incr_x <- model.matrix(formula, data = nb_monotone_incr)
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
#n_models == 1----
expect_no_error(
get_log_post_pred(
samples = nb_indep_model_samples_updatedattr,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
n_models = 1
)
)
log_post_pred1 <- get_log_post_pred(
samples = nb_indep_model_samples_updatedattr,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
n_models = 1
)
expect_true(is.matrix(log_post_pred1))
expect_identical(log_post_pred1, matrix(1, 1, 1))
#n_models == 2----
expect_no_error(
get_log_post_pred(
samples = nb_indep_model_samples_updatedattr,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
n_models = 2
)
)
log_post_pred2 <- get_log_post_pred(
samples = nb_indep_model_samples_updatedattr,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
n_models = 2
)
expect_true(is.matrix(log_post_pred2))
expect_identical(
nrow(log_post_pred2),
sum(sapply(nb_indep_model_samples_updatedattr, nrow))
)
expect_identical(ncol(log_post_pred2), nrow(nb_monotone_incr))
expect_identical(
tibble::as_tibble(log_post_pred2) %>%
dplyr::rowwise() %>%
dplyr::summarize(
a = length(unique(dplyr::c_across(cols = dplyr::everything())))
) %>%
dplyr::ungroup() %>%
dplyr::distinct(a) %>%
dplyr::pull(a),
nb_monotone_incr %>%
dplyr::group_by(dose) %>%
dplyr::distinct(response) %>%
dplyr::ungroup() %>%
dplyr::tally() %>%
dplyr::pull(n)
)
#n_models == 3----
expect_identical(
get_log_post_pred(
samples = nb_indep_model_samples_updatedattr,
data = nb_monotone_incr,
x = nb_monotone_incr_x,
n_models = 3
),
log_post_pred2
)
})
test_that("get_p works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
nb_monotone_incr <- readRDS(test_path("fixtures", "nb_monotone_incr.rds"))
expect_failure(expect_s3_class(nb_monotone_incr, NA))
expect_s3_class(nb_monotone_incr, "data.frame")
expect_failure(expect_named(nb_monotone_incr, NULL))
expect_no_error(
checkmate::assertSubset(
c("dose", "response"),
names(nb_monotone_incr)
)
)
expect_true(is.numeric(nb_monotone_incr$dose))
expect_true(is.numeric(nb_monotone_incr$response))
nb_monotone_incr_doses <- nb_monotone_incr %>%
dplyr::distinct(dose) %>%
dplyr::arrange(dose) %>%
dplyr::pull(dose)
nb_monotone_incr <- nb_monotone_incr %>%
dplyr::rowwise() %>%
dplyr::mutate(dose_index = which(dose == nb_monotone_incr_doses)) %>%
dplyr::ungroup()
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
samps <- dplyr::as_tibble(as.matrix(nb_indep_model_samples_updatedattr)) %>%
dplyr::mutate(iter = seq_len(n()))
expect_no_error(get_p(nb_monotone_incr$dose_index, samps))
p <- get_p(nb_monotone_incr$dose_index, samps)
expect_true(is.matrix(p))
expect_identical(
nrow(p),
sum(sapply(nb_indep_model_samples_updatedattr, nrow))
)
expect_identical(ncol(p), nrow(nb_monotone_incr))
expect_identical(
suppressMessages(tibble::as_tibble(p, .name_repair = "unique")) %>%
dplyr::rowwise() %>%
dplyr::summarize(
a = length(unique(dplyr::c_across(cols = dplyr::everything())))
) %>%
dplyr::ungroup() %>%
dplyr::distinct(a) %>%
dplyr::pull(a),
length(attr(nb_indep_model_samples_updatedattr, "doses"))
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.