exp4p | R Documentation |
Fits an exponential function of the form a*e^(b*(x+c))+d
exp4p(x, y, digits = 2, plot = FALSE, las = 1, col = 1:6, legarg = NULL, ...)
x , y |
x and y Data |
digits |
significant digits for rounding R^2. DEFAULT: 2 |
plot |
plot data and fitted functions? DEFAULT: FALSE |
las |
label axis style, see |
col |
6 colors for lines and legend texts. DEFAULT: 1:6 |
legarg |
Arguments passed to |
... |
further graphical parameters passed to |
This is mainly a building block for mReg
Data.frame with the 4 parameters for each optim
method
Optim can be slow! It refers to the functions rmse and rsquare, also in this package. L-BFGS-B needs finite values. In case it doesn't get any with the initial parameters (as in the first example Dataset), it tries again with the parameters optimized via Nelder Mead.
Berry Boessenkool, berry-b@gmx.de, 2012-2013, outsourced from mReg in July 2014
mReg
, lm
## Not run: ## Skip time consuming checks on CRAN
# exponential decline of temperature of a mug of hot chocolate
tfile <- system.file("extdata/Temp.txt", package="berryFunctions")
temp <- read.table(tfile, header=TRUE, dec=",")
head(temp)
plot(temp)
temp <- temp[-20,] # missing value - rmse would complain about it
x <- temp$Minuten
y <- temp$Temp
rm(tfile, temp)
exp4p(x,y, plot=TRUE)
# y=49*e^(-0.031*(x - 0 )) + 25 correct, judged from the model:
# Temp=T0 - Te *exp(k*t) + Te with T0=73.76, Tend=26.21, k=-0.031
# optmethod="Nelder-Mead" # y=52*e^(-0.031*(x + 3.4)) + 26 wrong
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.