Nothing
#' List of Parameter Estimates and Model-Implied Covariance Matrix
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @param thetahat Numeric vector.
#' Parameter estimates.
#' @param p Positive integer.
#' `p` regressors.
#' @param k Positive integer.
#' `p` regressors plus 1.
#' @param q Positive integer.
#' Length of `thetahat`.
#'
#' @return Returns a list of parameter estimates
#' and model-implied covariance matrix.
#'
#' @family Beta Monte Carlo Functions
#' @keywords betaMC mc internal
#' @noRd
.MCThetaHat <- function(thetahat,
p,
k,
q) {
beta <- thetahat[1:p]
sigmasq <- thetahat[k]
vechsigmacapx <- thetahat[
(k + 1):q
]
sigmacapx <- .SymofVech(
x = vechsigmacapx,
k = p
)
sigmaysq <- NA
sigmayx <- NA
sigmacap <- NA
pd <- FALSE
if (sigmasq > 0 && all(diag(sigmacapx) > 0)) {
sigmaysq <- .SigmaYSq(
beta = beta,
sigmasq = sigmasq,
sigmacapx = sigmacapx
)
if (sigmaysq > 0) {
sigmayx <- .SigmaYX(
beta = beta,
sigmacapx = sigmacapx
)
sigmacap <- matrix(
data = 0.0,
nrow = k,
ncol = k
)
sigmacap[1, 1] <- sigmaysq
sigmacap[
1,
2:k
] <- sigmacap[
2:k,
1
] <- sigmayx
sigmacap[
2:k,
2:k
] <- sigmacapx
pd <- .TestPositiveDefinite2(sigmacap)
}
}
return(
list(
coef = beta,
sigmasq = sigmasq,
vechsigmacapx = vechsigmacapx,
sigmacapx = sigmacapx,
sigmaysq = sigmaysq,
sigmayx = sigmayx,
sigmacap = sigmacap,
pd = pd
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.