| beta.sample.abund | R Documentation | 
Resamples the 3 abundance-based multiple-site dissimilarities (balanced variation fraction,abundance-gradient fraction, and overall dissimilarity) for a subset of sites of the original data frame.
beta.sample.abund(x, index.family="bray", sites = nrow(x), samples = 1)
x | 
 data frame, where rows are sites and columns are species  | 
index.family | 
  family of dissimilarity indices, partial match of   | 
sites | 
 number of sites for which multiple-site dissimilarities will be computed. If not specified, default is all sites.  | 
samples | 
 number of repetitions. If not specified, default is 1.  | 
The function returns a list with a dataframe with the resampled 3 multiple-site dissimilarities 
(balanced variation fraction, abundance-gradient fraction and overall dissimilarity; see beta.multi.abund), 
a vector with the respective means and a vector with the respective standard deviation.
For index.family="bray":
sampled.values | 
 dataframe containing beta.BRAY.BAL, beta.BRAY.GRA and beta.BRAY for all samples  | 
mean.values | 
 vector containing the mean values of beta.BRAY.BAL, beta.BRAY.GRA and beta.BRAY among samples  | 
sd.values | 
 vector containing the sd values of beta.BRAY.BAL, beta.BRAY.GRA and beta.BRAY among samples  | 
For index.family="ruzicka":
sampled.values | 
 dataframe containing beta.RUZ.BAL, beta.RUZ.GRA and beta.RUZ for all samples  | 
mean.values | 
 vector containing the mean values of beta.RUZ.BAL, beta.RUZ.GRA and beta.RUZ among samples  | 
sd.values | 
 vector containing the sd values of beta.RUZ.BAL, beta.RUZ.GRA and beta.RUZ among samples  | 
Andrés Baselga
Baselga, A. 2017. Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution 8: 799-808
beta.multi.abund, beta.sample
require(vegan)
data(BCI)
beta.sample.abund(BCI, index.family="bray", sites=10, samples=100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.